WO2005028724A2 - Bi-directional and multi-axial fabrics and fabric composites - Google Patents

Bi-directional and multi-axial fabrics and fabric composites Download PDF

Info

Publication number
WO2005028724A2
WO2005028724A2 PCT/US2003/017706 US0317706W WO2005028724A2 WO 2005028724 A2 WO2005028724 A2 WO 2005028724A2 US 0317706 W US0317706 W US 0317706W WO 2005028724 A2 WO2005028724 A2 WO 2005028724A2
Authority
WO
WIPO (PCT)
Prior art keywords
yarns
fabric
sets
composite
sheets
Prior art date
Application number
PCT/US2003/017706
Other languages
French (fr)
Other versions
WO2005028724A3 (en
Inventor
Ashok Bhatnagar
Elizabeth S. Parrish
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to CA 2500733 priority Critical patent/CA2500733C/en
Priority to EP03817701.0A priority patent/EP1585853B1/en
Priority to ES03817701.0T priority patent/ES2607808T3/en
Priority to JP2005508829A priority patent/JP4318691B2/en
Priority to MXPA04012304A priority patent/MXPA04012304A/en
Priority to IL16560003A priority patent/IL165600A0/en
Priority to IL16560004A priority patent/IL165600A/en
Publication of WO2005028724A2 publication Critical patent/WO2005028724A2/en
Publication of WO2005028724A3 publication Critical patent/WO2005028724A3/en

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/006With additional leno yarn
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0035Protective fabrics
    • D03D1/0052Antiballistic fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/41Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific twist
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/56Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads elastic
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
    • D04B21/165Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads with yarns stitched through one or more layers or tows, e.g. stitch-bonded fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C3/00Stretching, tentering or spreading textile fabrics; Producing elasticity in textile fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0471Layered armour containing fibre- or fabric-reinforced layers
    • F41H5/0478Fibre- or fabric-reinforced layers in combination with plastics layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0471Layered armour containing fibre- or fabric-reinforced layers
    • F41H5/0485Layered armour containing fibre- or fabric-reinforced layers all the layers being only fibre- or fabric-reinforced layers
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/08Ramie
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/28Cellulose esters or ethers, e.g. cellulose acetate
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/02Wool
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/06Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/10Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/14Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/024Fabric incorporating additional compounds
    • D10B2403/0241Fabric incorporating additional compounds enhancing mechanical properties
    • D10B2403/02412Fabric incorporating additional compounds enhancing mechanical properties including several arrays of unbent yarn, e.g. multiaxial fabrics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S139/00Textiles: weaving
    • Y10S139/01Bias fabric digest
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/911Penetration resistant layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2615Coating or impregnation is resistant to penetration by solid implements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2615Coating or impregnation is resistant to penetration by solid implements
    • Y10T442/2623Ballistic resistant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3008Woven fabric has an elastic quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/3195Three-dimensional weave [e.g., x-y-z planes, multi-planar warps and/or wefts, etc.]
    • Y10T442/3203Multi-planar warp layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/3195Three-dimensional weave [e.g., x-y-z planes, multi-planar warps and/or wefts, etc.]
    • Y10T442/3211Multi-planar weft layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/322Warp differs from weft
    • Y10T442/3228Materials differ
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/322Warp differs from weft
    • Y10T442/3228Materials differ
    • Y10T442/3236Including inorganic strand material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/322Warp differs from weft
    • Y10T442/3228Materials differ
    • Y10T442/3236Including inorganic strand material
    • Y10T442/3244Including natural strand material [e.g., cotton, wool, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/322Warp differs from weft
    • Y10T442/3228Materials differ
    • Y10T442/3236Including inorganic strand material
    • Y10T442/3252Including synthetic polymeric strand material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/322Warp differs from weft
    • Y10T442/3228Materials differ
    • Y10T442/326Including synthetic polymeric strand material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/322Warp differs from weft
    • Y10T442/3228Materials differ
    • Y10T442/326Including synthetic polymeric strand material
    • Y10T442/3268Including natural strand material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/322Warp differs from weft
    • Y10T442/3228Materials differ
    • Y10T442/326Including synthetic polymeric strand material
    • Y10T442/3276Including polyamide strand material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/322Warp differs from weft
    • Y10T442/3228Materials differ
    • Y10T442/326Including synthetic polymeric strand material
    • Y10T442/3285Including polyester strand material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3528Three or more fabric layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3602Three or more distinct layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3602Three or more distinct layers
    • Y10T442/365At least one layer is a preformed synthetic polymeric film or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3854Woven fabric with a preformed polymeric film or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3854Woven fabric with a preformed polymeric film or sheet
    • Y10T442/3886Olefin polymer or copolymer sheet or film [e.g., polypropylene, polyethylene, ethylene-butylene copolymer, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3976Including strand which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous composition, water solubility, heat shrinkability, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • Y10T442/413Including an elastic strand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • Y10T442/45Knit fabric is characterized by a particular or differential knit pattern other than open knit fabric or a fabric in which the strand denier is specified
    • Y10T442/456Including additional strand inserted within knit fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • Y10T442/488Including an additional knit fabric layer

Definitions

  • This invention relates to bi-directional and multi-axial fabrics, fabric composites, ballistically resistant assemblies thereof, and the methods by which they are made.
  • Ballistically resistant fabric-based composites have typically been formed from layers of fabrics that are plied together.
  • the fibers in a fabric can be woven, knitted and/or non-woven.
  • the individual fabric plies include non-woven and unidirectionally oriented fibers, successive plies are usually rotated relative to one another, for example at angles of 0°/90° or 0°/45 o /90 o /45°.
  • the individual fabric plies are generally either uncoated or else embedded in a polymeric matrix material which fills the void spaces between the fibers. If no matrix is present, the fabric or fiber sheet is inherently flexible.
  • a contrasting type of construction is a composite consisting of fibers and a single major matrix material.
  • USP 4,737,401 discloses ballistic resistant fine weave fabric articles.
  • USP's 5,788,907 and 5,958,804 disclose ballistically resistant calendered fabrics.
  • USP 4,623,574 discloses simple composites comprising high strength fibers embedded in an elastomeric matrix.
  • USP 5,677,029 discloses a flexible penetration resistant composite comprising at least one fibrous layer comprised of a network of strong fibers, and at least one continuous polymeric layer coextensive with, and at least partially bound to a surface of one of the fibrous layers.
  • Aramid fabrics rubber coated on one or both sides are commercially produced by Verseidag Industrietextilien Gmbh. under the product name UltraX.
  • USP 2,893,442 discloses a bi-directional woven fabric having transverse sets of straight and parallel high strength, high modulus yarns interleaved with thin binder yarns.
  • a bi-directional knitted fabric having transverse sets of straight and parallel high strength, high modulus yarns interleaved with thin binder yarns is disclosed in a publication by S. Raz, "Eine. optimaler Geotextilien,” Tettilinfomationen Kettenwir-Praxis, (2), 35-39 (1990).
  • a multi-axial warp knit fabric is disclosed in "Wellington Sears Handbook of Industrial Textiles", S.
  • This invention relates to novel fabrics and fabric composites, assemblies thereof having superior ballistic resistance to penetration by ballistic projectiles, and the method by which they are made.
  • the bidirectional and multi-axial articles of the invention provide superior ballistic effectiveness compared to ordinary woven and knitted fabrics but retain the ease of manufacture on conventional looms and knitting machines.
  • an article of the invention comprises a bidirectional woven fabric comprised of a first set of continuous filament unidirectional yarns lying in a first plane; a second set of continuous filament unidirectional yarns lying in a second plane above said first plane and arranged transversely to said first set of yarns; a third set of yarns arranged transversely to said first set of yarns and interlaced with said first set of yarns, each yarn of the third set lying above some and below the remaining yarns of said first set; a fourth set of yarns arranged transversely to said second set and said third set of yarns and interlaced with said second and thirds sets of yarns, each yarn of the fourth set lying above some and below the remaining yarns of said second and third sets of yarns; wherein each of the yarns comprising said first and second sets of yarns have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or
  • an article of the invention comprises a bi- directional knitted fabric comprised of a first set of continuous filament unidirectional yarns lying in a first plane; a second set of continuous filament unidirectional yarns lying in a second plane above said first plane and arranged transversely to said first set of yarns; a third set of interlacing yarns forming interlocking loops interlaced with said first set and said second set of yarns, each yarn of the third set lying above some and below the remaining yarns of said first set and said second set of yarns; wherein each of the yarns comprising said first and second sets of yarns have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or greater than about 22 J/g as measured by ASTM D2256; and wherein each of the yarns comprising said first and second sets of yarns, in proportion to the yarns comprising said third set of yarns has at least about
  • an article of the invention is a multi-axial knitted fabric comprised of: a set of continuous filament unidirectional yarns in a bottom plane; a plurality of intermediate planes above said bottom plane each defined by a set of continuous filament unidirectional yarns; a set of continuous filament unidirectional yarns in a top plane; a set of interlacing yarns forming interlocking loops, said loops binding the sets of unidirectional yarns in all planes; wherein the set of unidirectional yarns in each said plane is rotated at an angle relative to the set of unidirectional yarns in adjacent planes; wherein the yarns of each said set of unidirectional yarns have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or greater than about 22 J/g, all as measured by ASTM D2256; and wherein the yarns of each said set of unidirectional yarns, in proportion to said
  • a fabric composite of the invention comprises a fabric embedded in a matrix.
  • the fabric is selected from the group consisting of the woven and the knitted fabrics described, respectively, in the first, second and third embodiments above.
  • the matrix is selected from the group consisting of an elastomeric matrix having an initial tensile modulus less than about 6,000 psi (41.3 MPa), and a rigid matrix having an initial tensile modulus at least about 300,000 psi (2068 MPa)), as measured by ASTM D638.
  • a fabric composite of the invention comprises a fabric selected from the group consisting of the woven and the knitted fabrics described, respectively, in the first, second and third embodiments above, embedded in a rigid matrix having an initial tensile modulus at least about 300,000 psi (2068 MPa)) and coated on at least a portion of one surface with an elastomeric material matrix having an initial tensile modulus less than about 6,000 psi (41 .3 MPa), both as measured by ASTM D638.
  • a fabric composite of the invention comprises: a fabric, as described above, embedded in a matrix and a plastic film bonded to at least a portion of one surface of said embedded fabric.
  • a fabric composite of the invention comprises a fabric, as described above, with a plastic film bonded to at least a portion of at least one surface of said fabric.
  • ballistically resistant articles of the invention are comprised of a plurality of sheets plied together, wherein at least a majority of said sheets are selected from the group consisting of the inventive fabrics and the inventive fabric composites described above.
  • Figure 1 is a schematic representation of a woven fabric of the invention.
  • Figure 2 is a schematic representation of a knitted fabric of the invention.
  • Figure 3 is a schematic representation of a multi-axial knitted fabric of the invention.
  • an article of the invention comprises a bidirectional woven fabric comprised of a first set of continuous filament unidirectional yarns lying in a first plane; a second set of continuous filament unidirectional yarns lying in a second plane above said first plane and arranged transversely to said first set o f yarns; a third set of yarns arranged transversely to said first set of yarns and interlaced with said first set of yarns, each yarn of the third set lying above some and below the remaining yarns of said first set; a fourth set of yarns arranged transversely to said second set and said third set of yarns and interlaced with said second and third sets of yarns, each yarn of the fourth set lying above some and below the remaining yarns of said second and third sets of yarns; wherein each of the yarns comprising said first and second
  • Figure 1 is a schematic representation of a bi-directional woven fabric 10 of the invention.
  • a first set of continuous filament unidirectional yarns 11 lies in a first plane.
  • a second set of continuous filament unidirectional yarns 12 lies in a second plane above the first plane and arranged transversely to the first set of yarns 11.
  • a third set of yarns 13 is arranged transversely to the first set of yarns 11 and is interlaced with the first set of yarns 11.
  • a fourth set of yarns 14 is arranged transversely to the second set and the third set of yarns (12 and 13, respectively) and is interlaced with the second and thirds sets of yarns, 12 and 13, respectively.
  • an article of the invention comprises a bidirectional knitted fabric comprised of a first set of continuous filament unidirectional yarns lying in a first plane; a second set of continuous filament unidirectional yarns lying in a second plane above said first plane and arranged transversely to said first set of yarns; a third set of interlacing yarns forming interlocking loops interlaced with said first and said second set of yarns, each yarn of the third set lying above some and below the remaining yarns of said first set and said second set of yarns; wherein each of the yarns comprising said first and second sets of yarns have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or greater than about 22 J/g as measured by ASTM D2256; and wherein each of the yarns comprising said first and second sets of yarns, in proportion to the yarns comprising said third set of yarns have at least about twice the breaking
  • Figure 2 is a schematic representation of a bi-directional knitted fabric 20 of the invention.
  • a first set of continuous filament unidirectional yarns 21 lies in a first plane.
  • a second set of continuous filament unidirectional yarns 22 lies in a second plane above the first plane arranged transversely to the first set of yarns 21.
  • a third set of yarns 23 is interlaced with the first and second sets of yarns, 21 and 22 respectively, in interlocking loops.
  • Figure 2 shows a tricot knit but other knit configurations that stabilize the first and second sets of yarn, 21 and 22, are suitable such as interlocking weft chain stitches.
  • an article of the invention is a multi-axial knitted fabric comprised of: a set of continuous filament unidirectional yarns in a bottom plane; a plurality of intermediate planes above said bottom plane each defined by a set of continuous filament unidirectional yarns; a set of continuous filament unidirectional yarns in a top plane; a set of interlacing yarns forming interlocking loops, said loops binding the sets of unidirectional yarns in all planes; wherein the set of unidirectional yarns in each said plane is rotated at an angle relative to the set of unidirectional yarns in adjacent planes; wherein the yarns of each said set of unidirectional yarns have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or greater than about 22 J/g, all as measured by ASTM D2256; and wherein the yarns of each said set of unidirectional yarns, in proportion to said
  • Figure 3 is a schematic representation of a multi-axial knitted fabric 30 of the invention.
  • a first set of continuous filament unidirectional yarns 31 defines a bottom plane of the fabric.
  • two intermediate planes above the bottom plane are defined by sets of continuous filament unidirectional yarns 32 and 33.
  • a continuous filament unidirectional yarn set 34 defines a top plane of the fabric.
  • a set of interlacing yarns 35 form interlocking loops that enclose the unidirectional yarns in all planes.
  • the directions of the unidirectional yarns in each plane of the fabric are rotated at an angle to the unidirectional yarns in adjacent planes.
  • the yarn set 32 in the first intermediate plane is rotated at an angle of 90° to the yarns 31 in the bottom plane.
  • the multi-axial fabric of the invention may be comprised of greater numbers of intermediate planes and/or different angles of rotation between yarn planes than is illustrated in Figure 3.
  • the number of yarn planes and the angles between the unidirectional yarns are chosen to provide symmetrical properties to the fabric.
  • a fiber is an elongate body the length dimension of which is much greater than the transverse dimensions of width and thickness. Accordingly, the term fiber includes filament, ribbon, strip, and the like having regular or irregular cross-section.
  • a yarn is a continuous strand comprised of many fibers or filaments.
  • the fibers comprising the yarn may be continuous through the length of the yarn or the fibers may be staple fibers of lengths much shorter than the yarn.
  • the continuous filament unidirectional yarns are the primary structural components of the bi-directional and multi-axial fabrics of the invention.
  • the interlacing yarns provide integrity to the fabrics ithout deforming the unidirectional sets of yarns from an essentially planar configuration.
  • the continuous filament unidirectional yarns may be comprised of the same or different fiber materials, fiber forms, tensile properties and deniers.
  • the continuous filament unidirectional sets of yarns are each selected independently from the group consisting of continuous filament highly oriented, high molecular weight polyolefins, aramids, polybenzazoles and blends thereof.
  • the continuous filament unidirectional sets of yarns are each selected independently from the group consisting of continuous filament highly oriented, high molecular weight polyethylene, poly(p-phenylene terephthalamide, poly(m-phenylene isophthalamide), poly(benzobisoxazole, poly(benzobisthiazole), poly(benzobisimidazole) and blends thereof.
  • USP 4,457,985 generally discusses high molecular weight polyethylene and polypropylene fibers.
  • suitable fibers are those of weight average molecular weight of at least 150,000, preferably at least one million and more preferably between two million and five million.
  • Such high molecular weight polyethylene fibers may be grown in solution as described in USP 4,137,394 or USP 4,356,138, or may be filament spun from a solution to form a gel structure, as described in USP 4,413,110, or may be produced by a rolling and drawing process as described in USP 5,702,657.
  • polyethylene means a predominantly linear polyethylene material that may contain minor amounts of chain branching or comonomers not exceeding 5 modifying units per 100 main chain carbon atoms, and that may also contain admixed therewith not more than about 50 wt % of one or more polymeric additives such as alkene-l - polymers, in particular low density polyethylene, polypropylene or polybutylene, copolymers containing mono-olefins as primary monomers, oxidized polyolefins, graft polyolefin copolymers and polyoxymethylenes, or low molecular weight additives such as anti-oxidants, lubricants, ultra-violet screening agents, colorants and the like.
  • polymeric additives such as alkene-l - polymers, in particular low density polyethylene, polypropylene or polybutylene, copolymers containing mono-olefins as primary monomers, oxidized polyolefins, graft polyolefin copoly
  • the tenacity of the fibers should be at least 15 g/denier, preferably at least 20 g/denier, more preferably at least 25 g/denier and most preferably at least 30 g/denier.
  • the initial tensile modulus of the fibers is at least 300 g/denier, preferably at least 500 g/denier and more preferably at least 1 ,000 g/denier and most preferably at least 1 ,200 g/denier.
  • Preferred aramid fibers will have a tenacity of at least about 20 g/d, an initial tensile modulus of at least about 400 g/d and an energy-to-break at least about 8 J/g, and particularly preferred aramid fibers will have a tenacity of at least about 20 g/d, and an energy-to-break of at least about 20 J/g. Most preferred aramid fibers will have a tenacity of at least about 20 g/denier, a modulus of at least about 900 g/denier and an energy-to-break of at least about 30 J/g.
  • poly(p-phenylene terephalamide) filaments produced commercially by DuPont Corporation under the KEVLAR® trademark are particularly useful in forming ballistic resistant composites.
  • KEVLAR 29 has 500 g/denier and 22 g/denier and KEVLAR 49 has 1000 g/denier and 22 g/denier as values of initial tensile modulus and tenacity, respectively.
  • poly(m-phenylene isophthalamide) fibers produced commercially by DuPont under the NOMEX® trademark. Suitable polybenzazole fibers for the practice of this invention are disclosed for example in USP's 5,286,833, 5,296,185, 5,356,584, 5,534,205 and 6,040,050.
  • the polybenzazole fibers are selected from the group consisting of poly(benzobisoxazole, poly(benzobisthiazole), and poly(benzobisimidazole).
  • the polybenzazole fibers are ZYLON® poly(p-phenylene-2,6-benzobisoxazole) fibers from Toyobo Co.
  • the deniers of the continuous filament unidirectional sets of yarns are independently selected in the range of from about 100 to about 3000, more preferably in the range of from about 750 to about 1500.
  • the spacing of the yarns within each set of unidirectional yarns may be the same or different from that of yarns within other unidirectional yarn sets. By “spacing" is meant the distance between parallel yarn ends within the set.
  • the spacing between yarns will be greater for heavier denier yarns and smaller for lower denier yarns.
  • the yarn spacing for each of the unidirectional sets of yarns is independently selected in the range of from about 5 ends/in (2 ends/cm) to about 50 ends/in (20 ends/cm), more preferably in the range of from about 8 ends/in (3.2 ends/cm) to about 20 ends/in (7.9 ends/cm).
  • a yarn spacing of about 8 ends/in (3.2 ends/cm) to about 12 ends/in (4.7 ends/cm) is preferred for 1200 denier SPECTRA® highly oriented high molecular weight polyethylene yarns from Honeywell International Inc.
  • the spacing of the yarns in the third set is generally an integral multiple of the yarn spacing within the set having yarns parallel thereto, i.e., the first set in Figure 1.
  • the spacing of the yarns in the fourth set is also generally an integral multiple of the yarn spacing within the set having yarns parallel thereto, i.e., the second set of yarns in Figure 1.
  • the space between yarn ends in the first set is 0.1 inches
  • the space between yarn ends in the third set may be 0.1 , 0.2, 0.3, 0.4... inches.
  • the yarn spacing of the third and fourth sets is the same as that of the yarn set to which they are parallel.
  • the sets of interlacing yarns in a fabric of the invention i.e., the third and fourth yarn sets in a woven bidirectional fabric of the invention, the third yarn set in a knitted bi-directional fabric of the invention, and the interlacing and loop-forming yarn set in a knitted multi-axial fabric of the invention.
  • the sets of interlacing yarns where more than one, may be formed of different fiber materials and fiber forms.
  • the interlacing sets of yarns are each selected independently from the group consisting of polyamides, polyesters, polyvinyl alcohol, polyolefins, polyacrylonitrile, polyurethane, cellulose acetate, cotton, wool, and copolymers and blends thereof.
  • the interlacing sets of yarns are selected from the group consisting of nylon 6, nylon 66, polyethylene terephthalate (PET), polyethylene naphthalate, (PEN), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polypropylene, polyvinyl alcohol and polyurethane.
  • the interlacing sets of yarns may be comprised of elastomeric fibers or staple fibers.
  • the yarns in the interlacing yarn sets are selected so as not to possess more than about one-half the breaking strength (load at break, lbs (Kg) ) and have no less than about twice the percent elongation to break of each of the unidirectional yarns.
  • the breaking strengths of each of the interlacing sets of yarns do not exceed about one-third of the breaking strength and have no less than about six times the percent elongation at break of each of the unidirectional sets of yarns.
  • the breaking strengths of each of the interlacing sets of yarns do not exceed about one-third of the breaking strength and have no less than ten times the percent elongation of each of the unidirectional sets of yarns.
  • Yarns comprised of staple fibers generally have lower tenacity's than continuous filament yarns and may be used at higher deniers than continuous filament yarns in the interlacing sets of yarns.
  • the fibers in all sets of yarns may be twisted or entangled as disclosed in USP 5,773,370.
  • the unidirectional sets of yarns in each embodiment have minimum twist, from about zero turns/in to about 2 turns/in (0.78 turns/cm). Ballistics are typically better with a zero twist structural yarn. Greater twist levels are preferred for the yarns in interlacing yarn sets, from about 2 turns/in (0.28 turns/cm) to about 10 turns/in (3.9 turns/cm).
  • the woven and knitted fabrics of the invention are calendered.
  • the calendering is conducted by passing the fabric through opposed rolls rotating at the same speed and applying a pressure of about 800 lbs/ inch (140 kN/m) to about 1200 lbs/ inch (210 kN/m) of fabric width at a temperature ranging from about 100°C to about 130°C.
  • the calendering pressure is about 900 lbs/inch (158 kN/m) to about 1000 lbs/inch (175 kN/m) of fabric width, and the temperature ranges from about 115 °C to about 125 °C .
  • a fabric composite of the invention comprises a fabric, selected from the group consisting of the inventive woven and knitted fabrics described above, embedded in a matrix selected from the group consisting of an elastomeric material having an initial tensile modulus less than about 6,000 psi (41.3 MPa), and a rigid resin having an initial tensile modulus at least about 300,000 psi (2068 MPa), as measured by ASTM D638.
  • the matrix preferably comprises about 5 to about 30, more preferably about 10 to about 20, percent by weight of the fabric composite.
  • the matrix material is preferably applied by applying an uncured liquid matrix or a solution of the matrix material onto the fabric by means of a wetted roll and doctoring the liquid into the fabric to accomplish complete impregnation.
  • elastomeric materials and formulations having appropriately low modulus may be utilized as the matrix.
  • any of the following materials may be employed: polybutadiene, polyisoprene, natural rubber, ethylene-propylene copolymers, ethylene-propylene-diene terpolymers, polysulfide polymers, polyurethane elastomers, cholorosulfinated polyethylene, polychloroprene, plasticized polyvinylchloride using dioctyl phthalate or other plasticizers well known in the art, butadiene acrylonitrile elastomers, poly (isobutylene-co-isoprene), polyacrylates, polyesters, polyethers, fluoroelastomers, silicone elastomers, thermoplastic elastomers, copolymers of ethylene.
  • the elastomeric material does not bond too well or too loosely to the fabric material.
  • Preferred for polyethylene fabrics are block copolymers of conjugated dienes and vinyl aromatic copolymers. Butadiene and isoprene are preferred conjugated diene elastomers. Styrene, vinyl toluene and t-butyl styrene are preferred conjugated aromatic monomers. Block copolymers incorporating polyisoprene may be hydrogenated to produce thermoplastic elastomers having saturated hydrocarbon elastomer segments.
  • the low modulus elastomer may be compounded with fillers such as carbon black, silica, etc., and may be extended with oils and vulcanized by sulfur, peroxide, metal oxide or radiation cure systems using methods well known to rubber technologists. Blends of different elastomeric materials may be used together or one or more elastomers may be blended with one or more thermoplastics.
  • a rigid matrix resin useful in a fabric composite of the invention preferably possesses an initial tensile modulus at least 300,000 psi (2068 MPa) as measured by ASTM D638.
  • Preferred matrix resins include at least one thermoset vinyl ester, diallyl phthalate, and optionally a catalyst for curing the vinyl ester resin.
  • the vinyl ester is one produced by the esterification of a polyfunctional epoxy resin with an unsaturated monocarboxylic acid, usually methacrylic or acrylic acid.
  • Illustrative vinyl esters include diglycidyl adipate, diglycidyl isophthalate, di-(2,3-epoxybutyl) adipate, di-(2,3-epoxybutyl) oxalate, di-(2,3-epoxyhexyl) succinate, di-(3,4-epoxybutyl) maleate, di- (2,3- epoxyoctyl) pimelate, di-(2,3-epoxybutyl) phthalate, di-(2,3-epoxyoctyl) tetrahydrophthalate, di-(4,5-epoxy-dodecyl) maleate, di-(2,3-epoxybutyl) terephthalate, di-(2,3-epoxypentyl) thiodipropronate, di-(5,6-epoxy-tetradecyl) diphenyldicarboxylate, di-(3,4- epoxyhept
  • a fabric composite of the invention comprises a fabric selected from the group consisting of the woven and the knitted fabrics described, respectively, in the first, second and third embodiments described above, embedded in a rigid matrix having an initial tensile modulus at least about 300,000 psi (2068 MPa)) and coated on at least a portion of one surface with an elastomeric material having an initial tensile modulus less than about 6,000 psi (41.3 MPa), both as measured by ASTM D638.
  • a fabric composite of the invention comprises: a fabric selected from the group consisting of the inventive woven fabric described above and an inventive knitted fabric described above embedded in a matrix selected from th ⁇ group consisting of an elastomeric material having an initial tensile modulus less than about 6,000 psi (41.3 MPa), and a rigid resin having an initial tensile modulus at least about 300,000 psi (2068 MPa), as measured by ASTM D638; and a plastic film bonded to at least a portion of one surface of said embedded fabric.
  • a fabric composite of the invention comprises a fabric selected from the group consisting of the inventive woven fabric described above and an inventive knitted fabric described above; an elastomer coated on at least a portion of at least one surface of the fabric, the elastomer having an initial tensile modulus equal to or less than about 6,000 psi (41.3 MPa) as measured by ASTM D638; and a plastic film bonded to at least a portion of the elastomer-coated surface.
  • a fabric composite of the invention comprises a fabric selected from the group consisting of the inventive woven fabric described above and an inventive knitted fabric described above, with a plastic film bonded to at least a portion of at least one of the fabric surfaces.
  • the plastic film useful in a composite of the invention may be selected from the group consisting of polyolefins, polyamides, polyesters, polyurethanes, vinyl polymers, fluoropolymers and copolymers and mixtures thereof.
  • the plastic film does not bond too tightly or too loosely to the fabric or to the matrix material.
  • the matrix is a block copolymer of a conjugated diene and a vinyl aromatic copolymer
  • the plastic film is preferably linear low density polyethylene.
  • the matrix resin is a vinyl ester resin
  • the plastic film is preferably linear low density polyethylene.
  • the plastic film is preferably from 0.0002 inches (5.1 micrometers) to about 0.005 inches (127 micrometers), more preferably, from about 0.0003 inches (7.6 micrometers) to about 0.003 inches (76 micrometers), in thickness.
  • the plastic film preferably comprises from about 0.5 to about 5 percent by weight of the fabric composite.
  • the plastic film is biaxially oriented.
  • the plastic film is bonded to the fabric or the fabric composite by means of heat and pressure.
  • ballistically resistant articles of the invention are comprised of a plurality of sheets plied together, wherein at least a majority of said sheets are selected from the group consisting of the inventive fabrics and the inventive fabric composites described above.
  • a small pointed projectile can penetrate armor by laterally displacing fibers without breaking them.
  • the penetration resistance depends on how readily fibers may be pushed aside, and therefore, on the nature of the fiber network. Important factors are the tightness of weave or periodicity of cross-overs in cross-plied unidirectional composites, yarn and fiber denier, fiber-to-fiber friction, matrix characteristics, interiaminar bond strengths and others. Sharp fragments can penetrate by shearing fibers. Projectiles may also break fibers in tension. Impact of a projectile on a fabric causes propagation of a strain wave through the fabric.
  • a ballistically resistant article of the invention is comprised of a plurality of fabric sheets plied together in stacked array, wherein at least a majority of the fabric sheets are selected from the group consisting of a calendered woven fabric having the characteristics described above and a calendered knitted fabric having the characteristics described above.
  • a ballistically resistant article of the invention is comprised of a plurality of fabric composite sheets plied together in stacked array, wherein at least a majority of the fabric composite sheets have the characteristics of any one of the inventive fabric composites previously described.
  • the invention consists of methods for the production of the ballistically resistant articles of the invention.
  • One method of the invention comprises the steps of producing, by weaving or knitting, a bi-directional or multi-directional fabric having the characteristics described above, and plying sheets of the fabric in stacked array.
  • the fabric of the invention is calendered.
  • the fabric sheets are joined together by joining means such as stitching.
  • the method of the invention comprises the steps of: producing, by weaving or knitting, a bi-directional or multi-axial fabric having the characteristics described above; calendering the fabric; embedding the fabric in a matrix material selected from the group consisting of an elastomer having an initial tensile modulus less than about 6,000 psi (41.3 MPa) and a rigid resin having an initial tensile modulus at least about 300,000 psi (2068 MPa), as measured by ASTM D638, to produce a fabric composite; plying sheets of the fabric composite in stacked array; and bonding and curing the sheets of said fabric composite together to form a unitary article
  • a plastic sheet is bonded to at least a portion of one surface of the fabric composite prior to plying the sheets of the fabric composite in stacked array.
  • the method of the invention comprises the steps of: producing, by weaving or knitting, a bi-directional or multi-axial fabric having the characteristics described above; calendering the fabric; bonding a plastic film to at least a portion of at least one of the fabric surfaces to produce a fabric composite; plying sheets of the fabric composite in stacked array; and bonding the sheets of the fabric composite together to form a unitary article.
  • the method of the invention comprises the steps of: producing, by weaving or knitting, a bi-directional or multi-axial fabric having the characteristics described above; calendering the fabric; embedding the fabric in a matrix consisting essentially of a rigid resin having an initial tensile modulus at least about 300,000 psi (2068 MPa), as measured by ASTM D638, to produce a fabric composite; applying to the surface of the fabric composite an elastomeric material having a tensile modulus less than about 6000 psi (41.3 MPa), as measured by ASTM D638, to produce an elastomeric-coated fabric composite; plying sheets of the elastomeric-coated fabric composite in stacked array; and bonding and curing the sheets of the elastomeric-coated fabric composite together to form a unitary article.
  • the polyethylene yarn was of 1200 denier and had a tenacity of 30 g/d, initial tensile modulus of 850 g/d, energy-to-break of 40 J/g, breaking strength of 36 Kg and 3.6% elongation at break.
  • the fabric was impregnated with an epoxy vinyl ester resin [DERAKANE® 411 -45 from Dow Chemical containing 1 % LUPEROX® 256 curing agent (2,5-dimethyl-2,5 di(2-ethyl (hexanoylperoxy)hexane) from Elf Atochem].
  • the initial tensile modulus of the neat resin in the cured state was 490,000 psi (3379 MPa).
  • the resin content of the fabric prepreg was 20% by weight. Seventeen sheets of fabric prepreg having dimensions of 12" x 12" (30.5 cm x 30.5 cm) were stacked together and were bonded and cured into a unitary fabric composite panel by heating in a press at 116°C under a pressure of 550 psi (3.8 MPa) for 20 minutes. The areal density of the fabric composite panel was 1.05 Ibs/sq. ft. (5.13 Kg/sq. m). Comparative Example 2 A second set of seventeen 12" x 12" (30.5 cm x 30.5 cm) sheets of the same fabric prepreg prepared in Comparative Example 1 were cut and stacked together.
  • SPECTRA® 1000 from Honeywell International Inc. is woven into a plain weave fabric of 21 x 21 ends/ in (8.3 end/cm) on an American Iwer Model A2 180 loom.
  • the polyethylene yarn is of 1300 denier and has a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break.
  • the fabric is calendered by passing the fabric through opposed rolls rotating at the same speed and applying a pressure of 952 lbs/inch (163 kN/m) of fabric width at 121°C.
  • the fabric is impregnated with an epoxy vinyl ester resin, DERAKANE® 411 -45 containing 1 % LUPEROX® 256 curing agent.
  • the initial tensile modulus of the neat resin in a cured state is 490,000 psi (3379 MPa).
  • the resin content of the fabric prepreg is 20% by weight. Seventeen sheets of fabric prepreg having dimensions of 12" x 12" (30.5 cm x 30.5 cm) are stacked together and are bonded and cured into a unitary fabric composite panel by heating in a press at 116°C under a pressure of 550 psi (3.8 MPa) for 20 minutes.
  • the areal density of the fabric composite panel is 1.0 Ibs/sq. ft.
  • Example 1 A bi-directional fabric of the invention was woven on an American Iwer Model A2 180 loom. The fabric consisted of four yarn sets. The first yarn and second yarn sets each consisted of parallel highly oriented, high molecular weight continuous filament polyethylene yarns (SPECTRA®1000 from Honeywell International Inc.) of 1300 denier and having a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break. Referring to the schematic representation of Figure 1 , the first yarn set 11 and the second yarn set 12 were unidirectionally oriented transverse to one another in separate planes, one above the other.
  • SPECTRA®1000 highly oriented, high molecular weight continuous filament polyethylene yarns
  • a third yarn set 13 arranged transversely to the first yarn set 11 and interlaced with the yarns of the first set consisted of polyvinyl alcohol yarns of 75 denier and having a breaking strength of 0.38 Kg and 20% elongation at break.
  • a fourth yarn set 14 arranged transversely to the second and third yarn sets and interlaced with the yarns of the second and third yarn sets consisted of the same polyvinyl alcohol yarn.
  • the spacing of each of the four yarn sets in the fabric was 9 ends/in (3.5 ends/cm).
  • the bi-directional fabric was calendered by passing the fabric through opposed rolls rotating at the same speed and applying a pressure of 952 lbs/inch (163 kN/m) of fabric width at 121°C.
  • the calendered fabric was impregnated with 20% by weight of an epoxy vinyl ester resin having an initial tensile modulus in the cured state of 490,000 psi (3379 MPa) (DERAKANE® 411-45 containing 1 % LUPEROX® 256 curing agent).
  • an epoxy vinyl ester resin having an initial tensile modulus in the cured state of 490,000 psi (3379 MPa) (DERAKANE® 411-45 containing 1 % LUPEROX® 256 curing agent).
  • Thirty-four sheets of this prepreg of 12" x 12" (30.5 cm x 30.5 cm) dimension were bonded and cured into a unitary fabric composite panel by heating in a press at 116°C under a pressure of 550 psi (3.8 MPa) for 20 minutes.
  • the areal density of the fabric composite panel was 1.01 Ibs/sq. ft. (4.94 Kg/sq. m).
  • Example 2 A second set of thirty-four 12" x 12" (30.5 cm x 30.5 cm) sheets of the same bi-directional fabric prepreg prepared in Example 1 were cut and stacked together. The sheets were bonded and cured into a unitary fabric composite panel by heating in a press at 116°C under a pressure of 550 psi (3.8 MPa) for 20 minutes. The areal density of the second bi-directional fabric composite panel was 1.03 Ibs/sq. ft. (5.03 Kg/sq. m).
  • Example 3 A bi-directional fabric of the invention was knitted on a weft inserted, warp knit machine from Liba, Inc. The fabric consisted of three yarn sets.
  • the first yarn and second yarn sets each consisted of highly oriented high molecular weight continuous filament polyethylene yarns (SPECTRA® 1000 from Honeywell International Inc.) of 1300 denier and having a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break.
  • SPECTRA® 1000 highly oriented high molecular weight continuous filament polyethylene yarns
  • the first yarn set 21 and the second yarn set 22 were unidirectionally oriented transverse to one another in separate planes, one above the other.
  • the spacing of yarns in each of the first and second yarn sets in the fabric was 9 ends/in (3.5 ends/cm).
  • a third yarn set 23 consisting of polyvinyl alcohol of 75 denier and having 0.38 Kg breaking strength, 22% elongation at break was interleaved with both the first and second yarn sets with a tricot stitch.
  • the bi-directional knitted fabric is calendered as in Example 1 and impregnated with 20% by weight of epoxy vinyl ester resin having an initial tensile modulus in the cured state of 490,000 psi (3379 MPa) (DERAKANE 411-45 containing 1 % Lubrisol 256 curing agent).
  • the bi-directional fabric has in common with cross-plied unidirectional fabrics superior ballistic resistance, but it has in common with conventional woven fabrics, ease and economy of manufacture on conventional machinery.
  • Comparative Example 4 1200 denier polyethylene yarn designated SPECTRA® 900 (from Honeywell International Inc.), having a tenacity of 30 g/d, initial tensile modulus of 850 g/d, energy-to-break of 40 J/g, breaking strength of 36 Kg and 3.6% elongation at break was woven into a 21 X 21 ends/inch (8.27 ends/cm) plain weave fabric. Nineteen 18 x 18 inch (45.7 X 45.7 cm) squares were cut from the fabric. The squares were stacked together to form a ballistic target without any connection joining the individual squares.
  • Example 4 The same woven and calendered bi-directional fabric described in Example 1 was cut into thirty-six 18 x 18 inch (45.7 X 45.7 cm) squares. The squares are stacked together to form a ballistic target without any connection joining the individual squares.
  • Example 5 A bi-directional fabric of the invention is woven on an American Iwer Model A2 180 loom. The fabric consists of four yarn sets.
  • the first yarn and second yarn sets each consists of highly oriented, high molecular weight continuous filament polyethylene yarns (SPECTRA®1000 from Honeywell International Inc.) of 1300 denier, having a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break.
  • a third yarn set arranged transversely to the first yarn set and interlaced with the yarns of the first set consists of a polyurethane segmented block copolymer elastomeric yarn (DuPont LYCRA® SPANDEX brand) of 1 120 denier and having a breaking strength of 0.76 Kg and 535% elongation at break.
  • a fourth yarn set arranged transversely to the second and third yarn sets and interlaced with the yarns of the second and third yarn sets consists of the same elastomeric yarn as that of the third yarn set.
  • the spacing of yarns in each of the four yarn sets in the fabric is 9 ends/in (3.5 ends/cm).
  • the fabric is cut into thirty-six 18 x 18 inch (45.7 X 45.7 cm) squares and stacked together to form a ballistic target without any connection joining the individual squares.
  • Example 6 A bi-directional fabric of the invention is knitted on a weft inserted, warp knit machine from Liba, Inc. The fabric consists of three yarn sets.
  • the first and second yarn sets each consist of highly oriented high molecular weight continuous filament polyethylene yarn (SPECTRA® 1000 from Honeywell International Inc.) of 1300 denier and having a tenacity of 35 g/d, initial tensile modulus of 1 150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break.
  • the first yarn set and the second yarn set are unidirectionally oriented transverse to one another in separate planes, one above the other.
  • the spacing of yarns in each of the first and second yarn sets in the fabric is 9 ends/in (3.5 ends/cm).
  • a third yarn set consisting of a polyurethane segmented block copolymer (DuPont LYCRA® SPANDEX brand) elastomeric yarn of 1120 denier and having 0.76 Kg breaking strength and 535% elongation at break, is interleaved with both the first and second yarn sets with a tricot stitch.
  • the fabric is cut into thirty-six 18 x 18 inch (45.7 X 45.7 cm) squares and stacked together to form a ballistic target without any connection joining the individual squares.
  • Example 7 A multi-axial fabric of the invention is knitted on a weft inserted, warp knit machine from Liba, Inc.
  • the fabric consists of four continuous filament unidirectional sets of yarns, each in its own plane, and a fifth yarn set interlacing with and binding the unidirectional yarn sets with interlocking loops.
  • the first yarn and second yarn sets each consist of continuous filament highly oriented high molecular weight continuous filament polyethylene yarns (SPECTRA® 1000 from Honeywell International Inc.) of 1300 denier and having a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break.
  • the third and fourth yarn sets each consist of continuous filament aramid yarns (KEVLAR®49 From E.I.
  • the fifth interlacing yarn set consists of a partially oriented nylon 6 yarn of 300 denier having a breaking strength of 0.6 Kg and an elongation at break of 40%.
  • the spacing of yarns in each of the unidirectional yarn sets in the fabric is 20 ends/in (7.9 ends/cm).
  • the third unidirectional yarn set 33 is at an angle of 45° to yarns in the set 32 immediately below.
  • the fourth unidirectional yarn set 34 is transverse to the yarns in the set 33 immediately below.
  • the fifth yarn set 35 is interlaced with and binds the unidirectional yarn sets with interlocking loops.
  • the multi-axial fabric is calendered as described in Example 1 and squares are cut from the fabric and stacked together to form a ballistic target without any connection joining the individual squares.
  • bi-directional and multi-axial fabrics of the invention provide comparable or better resistance to penetration by a ballistic projectile.
  • the fabrics containing the elastomeric yarn are able to conform more readily and comfortably to the wearer when incorporated in soft body armor.
  • Comparative Example 5 A highly oriented, high molecular weight polyethylene yarn (SPECTRA® 900 from Honeywell International Inc.) was woven into a plain weave fabric of 21 x 21 ends/ in (8.3 end/cm) on an American Iwer Model A2 180 loom.
  • the polyethylene yarn was of 1200 denier and had a tenacity of 30 g/d, initial tensile modulus of 850 g/d, energy-to-break of 40 J/g, breaking strength of 36 Kg and 3.6% elongation at break.
  • One surface of the fabric was coated with a styrene-isoprene-styrene block copolymer elastomer designated KRATON® D1107 having an initial tensile modulus of 200 psi (1.4 MPa). The elastomer was 5% by weight of the coated fabric.
  • a linear low density polyethylene film having a thickness of 0.00035 inches (8.89 micrometers) was laminated to the elastomeric surface of the fabric by passing the fabric, the polyethylene film and an outer polyester release film through opposed rolls operating at the same speed under a roll pressure of 635 lbs/inch (109 kN/m) at 121 °C.
  • the release film was then stripped from the polyethylene-fabric composite.
  • the polyethylene film constituted 3.5 wt.% of the fabric composite.
  • Nineteen 18 x 18 inch (45.7 X 45.7 cm) squares were cut from the fabric composite and were stacked together to form a ballistic target without any connection joining the individual squares.
  • the target areal density was 1.01 Ib/sq.ft. (4.94 Kg/sq.m).
  • Comparative Example 6 A cross-plied unidirectional fabric composite (SPECTRA SHIELD® LCR from Honeywell International Inc.) was cut into 18 x 18 inch (45.7 X 45.7 cm) squares.
  • the fabric composite was comprised of highly oriented, high molecular weight polyethylene yarns having a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4%o elongation at break in an elastomeric matrix laminated with a polyethylene film. Twenty-four squares were stacked together to form a ballistic target without any connection joining the individual squares.
  • Example 8 The same bi-directional woven fabric as described in Example 1 is calendered as described in Example 1 and is impregnated with a styrene- isoprene-styrene block copolymer elastomer designated KRATON® D1107 having an initial tensile modulus of 200 psi (1.4 MPa). The elastomeric matrix is 20%o by weight of the fabric composite. The fabric composite is laminated with a 0.0015 in. (38 micrometers) thick biaxially oriented low density polyethylene film on each surface.
  • Example 9 The same bi-directional knitted fabric as described in Example 3 is calendered as described in Example 1 and is impregnated with a styrene- isoprene-styrene block copolymer elastomer designated KRATON® D1107 having an initial tensile modulus of 200 psi (1.4 MPa). The elastomeric matrix is 20% by weight of the fabric composite. The fabric composite is laminated with a 0.0015 in.
  • Example 10 The same multi-axial fabric described in Example 7 is calendered as described in Example 1 and is impregnated with a styrene-isoprene- styrene block copolymer elastomer designated KRATON® D1107 having an initial tensile modulus of 200 psi (1.4 MPa). The elastomeric matrix is 20% by weight of the fabric composite.
  • the fabric composite is laminated with a 0.0015 in. (38 micrometers) thick biaxially oriented low density polyethylene film on each surface. Squares are cut from the laminated fabric composite and stacked together to form a ballistic target without any connection joining the individual squares.
  • the target areal density is 1.02 Ib/sq.ft (4.98 Kg/sq. m).
  • the ballistic resistance of the targets prepared in Comparative Examples 5 and 6 and Examples 5 to 9 are evaluated according to the National Institute of Justice Standard NIJ 0101.03 using a clay backing and a 9mm full metal jacketed, 124 grain (8.0g) projectile.
  • the areal densities of the targets, the velocities at which 50% of projectiles fail to penetrate the targets (V50) and the specific energy absorption of the targets (SEAT) are listed in Table III below.
  • the bi-directional and multi-axial fabric composites of the invention are expected to have ballistic resistance (SEAT) intermediate to the plain weave fabric composites and the cross-plied unidirectional fabric composites.
  • Example 11 A bi-directional fabric of the invention is woven on an American Iwer Model A2 180 loom.
  • the fabric consists of four yarn sets.
  • the first and second yarn sets each consists of highly oriented, high molecular weight polyethylene yarns (SPECTRA®1000 from Honeywell International Inc.) of 1300 denier and having a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break.
  • SPECTRA®1000 highly oriented, high molecular weight polyethylene yarns
  • a third yarn set arranged transversely to the first yarn set and interlaced with the yarns of the first set consists of a water soluble polyvinyl alcohol yarn of 100 denier and having a breaking strength of 0.2 Kg and 45% elongation at break.
  • a fourth yarn set arranged transversely to the second and third yarn sets and interlaced with the yarns of the second and third yarn sets is comprised of the same polyvinyl alcohol yarn. The spacing of yarns in each of the four yarn sets in the fabric is 9 ends/in (3.5 ends/cm).

Abstract

Bi-directional and multi-axial woven or knitted fabrics, fabric composites, ballistically resistant assemblies thereof, and the methods by which they are made. The fabrics are comprised of sets of strong, substantially parallel, unidirectional yarns lying in parallel planes, one above the other, with the direction of the yarns (11) in a given plane rotated at an angle to the direction of the yarns (12) in adjacent planes; and one or more sets of yarns (13, 14) having lower strength and higher elongation interleaved with the strong yarns. The fabrics of the invention provide superior ballistic effectiveness compared to ordinary woven and knitted fabrics but retain the ease of manufacture on conventional looms and knitting machines.

Description

BI-DIRECTIONAL AND MULTI-AXIAL FABRICS AND FABRIC COMPOSITES
CROSS-REFERENCES TO RELATED APPLICATIONS This application claims the benefit of provisional application Serial No. 60/387,201 entitled "Bi-Directional Fabric and Fabric Composites" filed June 7, 2002, and is related to co-pending applications Serial No. 09/639,903 filed Aug.16, 2000, entitled "Impact Resistant Rigid Composite and Method of Manufacture" and Serial No. 10/126,202 filed Apr. 19, 2002, entitled, "Ballistic Fabric Laminates". BACKGROUND OF THE INVENTION
1. Field of the Invention This invention relates to bi-directional and multi-axial fabrics, fabric composites, ballistically resistant assemblies thereof, and the methods by which they are made.
2. Description of the Related Art Ballistically resistant fabric-based composites have typically been formed from layers of fabrics that are plied together. The fibers in a fabric can be woven, knitted and/or non-woven. Where the individual fabric plies include non-woven and unidirectionally oriented fibers, successive plies are usually rotated relative to one another, for example at angles of 0°/90° or 0°/45o/90o/45°. The individual fabric plies are generally either uncoated or else embedded in a polymeric matrix material which fills the void spaces between the fibers. If no matrix is present, the fabric or fiber sheet is inherently flexible. A contrasting type of construction is a composite consisting of fibers and a single major matrix material. To construct rigid composites of this type, individual plies are bonded together using heat and pressure to adhere the matrix in each ply, forming a bond between them, and consolidating the whole into a unitary article. These earlier constructions have several disadvantages. Woven or knitted fabrics generally have poorer ballistic resistance than cross-plied unidirectional fiber composites. On the other hand, woven or knitted fabrics can be produced at lower cost and greater ease of manufacture with more commonly available equipment than can cross-plied unidirectional fiber composites. A need therefore exists for a fabric construction that retains the advantages of lower cost and greater ease of manufacture, but that has ballistic resistance superior to conventional fabrics. Ideally, the fabric construction would be highly flexible and capable of being bonded to itself or to hard facings to form rigid panels. USP 4,737,401 discloses ballistic resistant fine weave fabric articles. USP's 5,788,907 and 5,958,804 disclose ballistically resistant calendered fabrics. USP 4,623,574 discloses simple composites comprising high strength fibers embedded in an elastomeric matrix. USP 5,677,029 discloses a flexible penetration resistant composite comprising at least one fibrous layer comprised of a network of strong fibers, and at least one continuous polymeric layer coextensive with, and at least partially bound to a surface of one of the fibrous layers. Aramid fabrics rubber coated on one or both sides are commercially produced by Verseidag Industrietextilien Gmbh. under the product name UltraX. Rigid panels formed by bonding the rubber- coated fabrics together under heat and pressure are also available. In another context, USP 2,893,442 discloses a bi-directional woven fabric having transverse sets of straight and parallel high strength, high modulus yarns interleaved with thin binder yarns. A bi-directional knitted fabric having transverse sets of straight and parallel high strength, high modulus yarns interleaved with thin binder yarns is disclosed in a publication by S. Raz, "Eine Auswahl optimaler Geotextilien," Tettilinfomationen Kettenwir-Praxis, (2), 35-39 (1990). A multi-axial warp knit fabric is disclosed in "Wellington Sears Handbook of Industrial Textiles", S. Adanur, Ed., Technomic Publishing Co., Inc., Lancaster, PA, 246-247 (1995). Each of the constructions cited above represented progress toward the goals to which they were directed. However, none described the specific constructions of the fabrics, fabric composites and assemblies of this invention, and none satisfied all of the needs met by this invention.
SUMMARY OF THE INVENTION This invention relates to novel fabrics and fabric composites, assemblies thereof having superior ballistic resistance to penetration by ballistic projectiles, and the method by which they are made. The bidirectional and multi-axial articles of the invention provide superior ballistic effectiveness compared to ordinary woven and knitted fabrics but retain the ease of manufacture on conventional looms and knitting machines. In a first embodiment, an article of the invention comprises a bidirectional woven fabric comprised of a first set of continuous filament unidirectional yarns lying in a first plane; a second set of continuous filament unidirectional yarns lying in a second plane above said first plane and arranged transversely to said first set of yarns; a third set of yarns arranged transversely to said first set of yarns and interlaced with said first set of yarns, each yarn of the third set lying above some and below the remaining yarns of said first set; a fourth set of yarns arranged transversely to said second set and said third set of yarns and interlaced with said second and thirds sets of yarns, each yarn of the fourth set lying above some and below the remaining yarns of said second and third sets of yarns; wherein each of the yarns comprising said first and second sets of yarns have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or greater than about 22 J/g as measured by ASTM D2256; and wherein each of the yarns comprising said first and second sets of yarns, in proportion to the yarns comprising each of said third and fourth sets of yarns, have at least about twice the breaking strength and at most about one-half the percent elongation to break. In a second embodiment, an article of the invention comprises a bi- directional knitted fabric comprised of a first set of continuous filament unidirectional yarns lying in a first plane; a second set of continuous filament unidirectional yarns lying in a second plane above said first plane and arranged transversely to said first set of yarns; a third set of interlacing yarns forming interlocking loops interlaced with said first set and said second set of yarns, each yarn of the third set lying above some and below the remaining yarns of said first set and said second set of yarns; wherein each of the yarns comprising said first and second sets of yarns have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or greater than about 22 J/g as measured by ASTM D2256; and wherein each of the yarns comprising said first and second sets of yarns, in proportion to the yarns comprising said third set of yarns has at least about twice the breaking strength and, at most, about one-half the percent elongation to break. In a third embodiment, an article of the invention is a multi-axial knitted fabric comprised of: a set of continuous filament unidirectional yarns in a bottom plane; a plurality of intermediate planes above said bottom plane each defined by a set of continuous filament unidirectional yarns; a set of continuous filament unidirectional yarns in a top plane; a set of interlacing yarns forming interlocking loops, said loops binding the sets of unidirectional yarns in all planes; wherein the set of unidirectional yarns in each said plane is rotated at an angle relative to the set of unidirectional yarns in adjacent planes; wherein the yarns of each said set of unidirectional yarns have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or greater than about 22 J/g, all as measured by ASTM D2256; and wherein the yarns of each said set of unidirectional yarns, in proportion to said interlacing yarns have at least about twice the breaking strength and, at most, about one-half the percent elongation to break. In another embodiment, a fabric composite of the invention comprises a fabric embedded in a matrix. The fabric is selected from the group consisting of the woven and the knitted fabrics described, respectively, in the first, second and third embodiments above. The matrix is selected from the group consisting of an elastomeric matrix having an initial tensile modulus less than about 6,000 psi (41.3 MPa), and a rigid matrix having an initial tensile modulus at least about 300,000 psi (2068 MPa)), as measured by ASTM D638. In another embodiment, a fabric composite of the invention comprises a fabric selected from the group consisting of the woven and the knitted fabrics described, respectively, in the first, second and third embodiments above, embedded in a rigid matrix having an initial tensile modulus at least about 300,000 psi (2068 MPa)) and coated on at least a portion of one surface with an elastomeric material matrix having an initial tensile modulus less than about 6,000 psi (41 .3 MPa), both as measured by ASTM D638. In yet another embodiment, a fabric composite of the invention comprises: a fabric, as described above, embedded in a matrix and a plastic film bonded to at least a portion of one surface of said embedded fabric. In another embodiment, a fabric composite of the invention comprises a fabric, as described above, with a plastic film bonded to at least a portion of at least one surface of said fabric. In other embodiments, ballistically resistant articles of the invention are comprised of a plurality of sheets plied together, wherein at least a majority of said sheets are selected from the group consisting of the inventive fabrics and the inventive fabric composites described above.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic representation of a woven fabric of the invention. Figure 2 is a schematic representation of a knitted fabric of the invention. Figure 3 is a schematic representation of a multi-axial knitted fabric of the invention.
DETAILED DESCRIPTION OF THE INVENTION This invention relates to novel fabrics and fabric composites, assemblies thereof having superior ballistic resistance to penetration by ballistic projectiles, and to the methods by which they are made. In one embodiment, an article of the invention comprises a bidirectional woven fabric comprised of a first set of continuous filament unidirectional yarns lying in a first plane; a second set of continuous filament unidirectional yarns lying in a second plane above said first plane and arranged transversely to said first set of yarns; a third set of yarns arranged transversely to said first set of yarns and interlaced with said first set of yarns, each yarn of the third set lying above some and below the remaining yarns of said first set; a fourth set of yarns arranged transversely to said second set and said third set of yarns and interlaced with said second and third sets of yarns, each yarn of the fourth set lying above some and below the remaining yarns of said second and third sets of yarns; wherein each of the yarns comprising said first and second sets of yarns have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or greater than about 22 J/g as measured by ASTM D2256; and wherein each of the yarns comprising said first and second sets of yarns, in proportion to the yarns comprising each of said third and fourth sets of yarns, have at least about twice the breaking strength and at most about one-half the percent elongation to break. Figure 1 is a schematic representation of a bi-directional woven fabric 10 of the invention. A first set of continuous filament unidirectional yarns 11 lies in a first plane. A second set of continuous filament unidirectional yarns 12 lies in a second plane above the first plane and arranged transversely to the first set of yarns 11. A third set of yarns 13 is arranged transversely to the first set of yarns 11 and is interlaced with the first set of yarns 11. A fourth set of yarns 14 is arranged transversely to the second set and the third set of yarns (12 and 13, respectively) and is interlaced with the second and thirds sets of yarns, 12 and 13, respectively. In a second embodiment, an article of the invention comprises a bidirectional knitted fabric comprised of a first set of continuous filament unidirectional yarns lying in a first plane; a second set of continuous filament unidirectional yarns lying in a second plane above said first plane and arranged transversely to said first set of yarns; a third set of interlacing yarns forming interlocking loops interlaced with said first and said second set of yarns, each yarn of the third set lying above some and below the remaining yarns of said first set and said second set of yarns; wherein each of the yarns comprising said first and second sets of yarns have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or greater than about 22 J/g as measured by ASTM D2256; and wherein each of the yarns comprising said first and second sets of yarns, in proportion to the yarns comprising said third set of yarns have at least about twice the breaking strength and at most about one-half the percent elongation to break. Figure 2 is a schematic representation of a bi-directional knitted fabric 20 of the invention. A first set of continuous filament unidirectional yarns 21 lies in a first plane. A second set of continuous filament unidirectional yarns 22 lies in a second plane above the first plane arranged transversely to the first set of yarns 21. A third set of yarns 23 is interlaced with the first and second sets of yarns, 21 and 22 respectively, in interlocking loops. Figure 2 shows a tricot knit but other knit configurations that stabilize the first and second sets of yarn, 21 and 22, are suitable such as interlocking weft chain stitches. In a third embodiment, an article of the invention is a multi-axial knitted fabric comprised of: a set of continuous filament unidirectional yarns in a bottom plane; a plurality of intermediate planes above said bottom plane each defined by a set of continuous filament unidirectional yarns; a set of continuous filament unidirectional yarns in a top plane; a set of interlacing yarns forming interlocking loops, said loops binding the sets of unidirectional yarns in all planes; wherein the set of unidirectional yarns in each said plane is rotated at an angle relative to the set of unidirectional yarns in adjacent planes; wherein the yarns of each said set of unidirectional yarns have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or greater than about 22 J/g, all as measured by ASTM D2256; and wherein the yarns of each said set of unidirectional yarns, in proportion to said interlacing yarns have at least about twice the breaking strength and, at most, about one-half the percent elongation to break. Figure 3 is a schematic representation of a multi-axial knitted fabric 30 of the invention. A first set of continuous filament unidirectional yarns 31 defines a bottom plane of the fabric. In the embodiment illustrated, two intermediate planes above the bottom plane are defined by sets of continuous filament unidirectional yarns 32 and 33. A continuous filament unidirectional yarn set 34 defines a top plane of the fabric. A set of interlacing yarns 35 form interlocking loops that enclose the unidirectional yarns in all planes. The directions of the unidirectional yarns in each plane of the fabric are rotated at an angle to the unidirectional yarns in adjacent planes. In the specific embodiment illustrated, the yarn set 32 in the first intermediate plane is rotated at an angle of 90° to the yarns 31 in the bottom plane. The yarns 33 in the second intermediate plane are rotated at an angle of 45° to the yarns 32 in the first intermediate plane. The yarns 34 in the top plane are rotated at an angle of 90° to the yarns 33 in the second intermediate plane. It will be evident that the multi-axial fabric of the invention may be comprised of greater numbers of intermediate planes and/or different angles of rotation between yarn planes than is illustrated in Figure 3. Preferably, the number of yarn planes and the angles between the unidirectional yarns are chosen to provide symmetrical properties to the fabric. For the purposes of the present invention, a fiber is an elongate body the length dimension of which is much greater than the transverse dimensions of width and thickness. Accordingly, the term fiber includes filament, ribbon, strip, and the like having regular or irregular cross-section. A yarn is a continuous strand comprised of many fibers or filaments. The fibers comprising the yarn may be continuous through the length of the yarn or the fibers may be staple fibers of lengths much shorter than the yarn. The continuous filament unidirectional yarns are the primary structural components of the bi-directional and multi-axial fabrics of the invention. The interlacing yarns provide integrity to the fabrics ithout deforming the unidirectional sets of yarns from an essentially planar configuration. The continuous filament unidirectional yarns may be comprised of the same or different fiber materials, fiber forms, tensile properties and deniers. Preferably, the continuous filament unidirectional sets of yarns are each selected independently from the group consisting of continuous filament highly oriented, high molecular weight polyolefins, aramids, polybenzazoles and blends thereof. Most preferably, the continuous filament unidirectional sets of yarns are each selected independently from the group consisting of continuous filament highly oriented, high molecular weight polyethylene, poly(p-phenylene terephthalamide, poly(m-phenylene isophthalamide), poly(benzobisoxazole, poly(benzobisthiazole), poly(benzobisimidazole) and blends thereof. USP 4,457,985 generally discusses high molecular weight polyethylene and polypropylene fibers. In the case of polyethylene, suitable fibers are those of weight average molecular weight of at least 150,000, preferably at least one million and more preferably between two million and five million. Such high molecular weight polyethylene fibers may be grown in solution as described in USP 4,137,394 or USP 4,356,138, or may be filament spun from a solution to form a gel structure, as described in USP 4,413,110, or may be produced by a rolling and drawing process as described in USP 5,702,657. As used herein, the term polyethylene means a predominantly linear polyethylene material that may contain minor amounts of chain branching or comonomers not exceeding 5 modifying units per 100 main chain carbon atoms, and that may also contain admixed therewith not more than about 50 wt % of one or more polymeric additives such as alkene-l - polymers, in particular low density polyethylene, polypropylene or polybutylene, copolymers containing mono-olefins as primary monomers, oxidized polyolefins, graft polyolefin copolymers and polyoxymethylenes, or low molecular weight additives such as anti-oxidants, lubricants, ultra-violet screening agents, colorants and the like. Depending upon the formation technique, the draw ratio and temperatures, and other conditions, a variety of properties can be imparted to these fibers. The tenacity of the fibers should be at least 15 g/denier, preferably at least 20 g/denier, more preferably at least 25 g/denier and most preferably at least 30 g/denier. Similarly, the initial tensile modulus of the fibers, as measured by an Instron tensile testing machine, is at least 300 g/denier, preferably at least 500 g/denier and more preferably at least 1 ,000 g/denier and most preferably at least 1 ,200 g/denier. These highest values for initial tensile modulus and tenacity are generally obtainable only by employing solution grown or gel spinning processes. Many of the filaments have melting points higher than the melting point of the polymer from which they were formed. Thus, for example, polyethylene of weight average molecular weights from about 150,000 to two million generally have melting points in the bulk of about138°C. The highly oriented polyethylene filaments made of these materials have melting points of from about 7 to about 13°C higher. Thus, a slight increase in melting point reflects the crystalline perfection and higher crystalline orientation of the filaments as compared to the bulk polymer. In the case of aramid fibers, suitable fibers formed from aromatic polyamides are described in USP 3,671 ,542. Preferred aramid fibers will have a tenacity of at least about 20 g/d, an initial tensile modulus of at least about 400 g/d and an energy-to-break at least about 8 J/g, and particularly preferred aramid fibers will have a tenacity of at least about 20 g/d, and an energy-to-break of at least about 20 J/g. Most preferred aramid fibers will have a tenacity of at least about 20 g/denier, a modulus of at least about 900 g/denier and an energy-to-break of at least about 30 J/g. For example, poly(p-phenylene terephalamide) filaments produced commercially by DuPont Corporation under the KEVLAR® trademark are particularly useful in forming ballistic resistant composites. KEVLAR 29 has 500 g/denier and 22 g/denier and KEVLAR 49 has 1000 g/denier and 22 g/denier as values of initial tensile modulus and tenacity, respectively. Also useful in the practice of this invention is poly(m-phenylene isophthalamide) fibers produced commercially by DuPont under the NOMEX® trademark. Suitable polybenzazole fibers for the practice of this invention are disclosed for example in USP's 5,286,833, 5,296,185, 5,356,584, 5,534,205 and 6,040,050. Preferably, the polybenzazole fibers are selected from the group consisting of poly(benzobisoxazole, poly(benzobisthiazole), and poly(benzobisimidazole). Most preferably, the polybenzazole fibers are ZYLON® poly(p-phenylene-2,6-benzobisoxazole) fibers from Toyobo Co. The deniers of the continuous filament unidirectional sets of yarns are independently selected in the range of from about 100 to about 3000, more preferably in the range of from about 750 to about 1500. The spacing of the yarns within each set of unidirectional yarns may be the same or different from that of yarns within other unidirectional yarn sets. By "spacing" is meant the distance between parallel yarn ends within the set. The spacing between yarns will be greater for heavier denier yarns and smaller for lower denier yarns. Preferably the yarn spacing for each of the unidirectional sets of yarns is independently selected in the range of from about 5 ends/in (2 ends/cm) to about 50 ends/in (20 ends/cm), more preferably in the range of from about 8 ends/in (3.2 ends/cm) to about 20 ends/in (7.9 ends/cm). A yarn spacing of about 8 ends/in (3.2 ends/cm) to about 12 ends/in (4.7 ends/cm) is preferred for 1200 denier SPECTRA® highly oriented high molecular weight polyethylene yarns from Honeywell International Inc. In the bi-directional woven fabrics of the invention, the spacing of the yarns in the third set is generally an integral multiple of the yarn spacing within the set having yarns parallel thereto, i.e., the first set in Figure 1. The spacing of the yarns in the fourth set is also generally an integral multiple of the yarn spacing within the set having yarns parallel thereto, i.e., the second set of yarns in Figure 1. For example, if the space between yarn ends in the first set is 0.1 inches, the space between yarn ends in the third set may be 0.1 , 0.2, 0.3, 0.4... inches. Preferably, the yarn spacing of the third and fourth sets is the same as that of the yarn set to which they are parallel. The following comments are directed to the sets of interlacing yarns in a fabric of the invention, i.e., the third and fourth yarn sets in a woven bidirectional fabric of the invention, the third yarn set in a knitted bi-directional fabric of the invention, and the interlacing and loop-forming yarn set in a knitted multi-axial fabric of the invention. The sets of interlacing yarns, where more than one, may be formed of different fiber materials and fiber forms. Preferably, the interlacing sets of yarns are each selected independently from the group consisting of polyamides, polyesters, polyvinyl alcohol, polyolefins, polyacrylonitrile, polyurethane, cellulose acetate, cotton, wool, and copolymers and blends thereof. Most preferably, the interlacing sets of yarns are selected from the group consisting of nylon 6, nylon 66, polyethylene terephthalate (PET), polyethylene naphthalate, (PEN), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polypropylene, polyvinyl alcohol and polyurethane. The interlacing sets of yarns may be comprised of elastomeric fibers or staple fibers. The yarns in the interlacing yarn sets are selected so as not to possess more than about one-half the breaking strength (load at break, lbs (Kg) ) and have no less than about twice the percent elongation to break of each of the unidirectional yarns. Preferably, the breaking strengths of each of the interlacing sets of yarns do not exceed about one-third of the breaking strength and have no less than about six times the percent elongation at break of each of the unidirectional sets of yarns. Most preferably, the breaking strengths of each of the interlacing sets of yarns do not exceed about one-third of the breaking strength and have no less than ten times the percent elongation of each of the unidirectional sets of yarns. These choices insure that the unidirectional yarns will remain essentially unrestrained during a ballistic impact and will be best able to participate in absorbing the energy of a projectile. Yarns comprised of staple fibers generally have lower tenacity's than continuous filament yarns and may be used at higher deniers than continuous filament yarns in the interlacing sets of yarns. The fibers in all sets of yarns may be twisted or entangled as disclosed in USP 5,773,370. Preferably, the unidirectional sets of yarns in each embodiment have minimum twist, from about zero turns/in to about 2 turns/in (0.78 turns/cm). Ballistics are typically better with a zero twist structural yarn. Greater twist levels are preferred for the yarns in interlacing yarn sets, from about 2 turns/in (0.28 turns/cm) to about 10 turns/in (3.9 turns/cm). Preferably, the woven and knitted fabrics of the invention are calendered. Preferably, the calendering is conducted by passing the fabric through opposed rolls rotating at the same speed and applying a pressure of about 800 lbs/ inch (140 kN/m) to about 1200 lbs/ inch (210 kN/m) of fabric width at a temperature ranging from about 100°C to about 130°C. Preferably the calendering pressure is about 900 lbs/inch (158 kN/m) to about 1000 lbs/inch (175 kN/m) of fabric width, and the temperature ranges from about 115 °C to about 125 °C . In another embodiment, a fabric composite of the invention comprises a fabric, selected from the group consisting of the inventive woven and knitted fabrics described above, embedded in a matrix selected from the group consisting of an elastomeric material having an initial tensile modulus less than about 6,000 psi (41.3 MPa), and a rigid resin having an initial tensile modulus at least about 300,000 psi (2068 MPa), as measured by ASTM D638. The matrix preferably comprises about 5 to about 30, more preferably about 10 to about 20, percent by weight of the fabric composite. The matrix material is preferably applied by applying an uncured liquid matrix or a solution of the matrix material onto the fabric by means of a wetted roll and doctoring the liquid into the fabric to accomplish complete impregnation. Alternatively, dipping or immersion of the fabric into a liquid bath may be employed. A wide variety of elastomeric materials and formulations having appropriately low modulus may be utilized as the matrix. For example, any of the following materials may be employed: polybutadiene, polyisoprene, natural rubber, ethylene-propylene copolymers, ethylene-propylene-diene terpolymers, polysulfide polymers, polyurethane elastomers, cholorosulfinated polyethylene, polychloroprene, plasticized polyvinylchloride using dioctyl phthalate or other plasticizers well known in the art, butadiene acrylonitrile elastomers, poly (isobutylene-co-isoprene), polyacrylates, polyesters, polyethers, fluoroelastomers, silicone elastomers, thermoplastic elastomers, copolymers of ethylene. Preferably, the elastomeric material does not bond too well or too loosely to the fabric material. Preferred for polyethylene fabrics are block copolymers of conjugated dienes and vinyl aromatic copolymers. Butadiene and isoprene are preferred conjugated diene elastomers. Styrene, vinyl toluene and t-butyl styrene are preferred conjugated aromatic monomers. Block copolymers incorporating polyisoprene may be hydrogenated to produce thermoplastic elastomers having saturated hydrocarbon elastomer segments. The polymers may be simple tri-block copolymers of the type R- (BA)x (x=3-150); wherein A is a block from a polyvinyl aromatic monomer and B is a block from a conjugated diene elastomer. Many of these polymers are produced commercially by Kraton Polymers, Inc. The low modulus elastomer may be compounded with fillers such as carbon black, silica, etc., and may be extended with oils and vulcanized by sulfur, peroxide, metal oxide or radiation cure systems using methods well known to rubber technologists. Blends of different elastomeric materials may be used together or one or more elastomers may be blended with one or more thermoplastics. A rigid matrix resin useful in a fabric composite of the invention preferably possesses an initial tensile modulus at least 300,000 psi (2068 MPa) as measured by ASTM D638. Preferred matrix resins include at least one thermoset vinyl ester, diallyl phthalate, and optionally a catalyst for curing the vinyl ester resin. Preferably, the vinyl ester is one produced by the esterification of a polyfunctional epoxy resin with an unsaturated monocarboxylic acid, usually methacrylic or acrylic acid. Illustrative vinyl esters include diglycidyl adipate, diglycidyl isophthalate, di-(2,3-epoxybutyl) adipate, di-(2,3-epoxybutyl) oxalate, di-(2,3-epoxyhexyl) succinate, di-(3,4-epoxybutyl) maleate, di- (2,3- epoxyoctyl) pimelate, di-(2,3-epoxybutyl) phthalate, di-(2,3-epoxyoctyl) tetrahydrophthalate, di-(4,5-epoxy-dodecyl) maleate, di-(2,3-epoxybutyl) terephthalate, di-(2,3-epoxypentyl) thiodipropronate, di-(5,6-epoxy-tetradecyl) diphenyldicarboxylate, di-(3,4- epoxyheptyl) sulphonyldibutyrate, tri-(2,3- epoxybutyl)-1 ,2,4-butanetricarboxylate, di-(5,6-epoxypentadecyl) maleate, di- (2,3-epoxybutyl) azelate, di(3,4-epoxypentadecyl) citrate, di-(4,5-epoxyoctyl) cyclohexane-1 ,3-dicarboxylate, di-(4,5-epoxyoctadecyl) malonate, bisphenol- A-fumaric acid polyester and similar materials. Particularly preferred are the epoxy vinyl esters available from Dow Chemical Company under the DERAKANE® trademark. In another embodiment, a fabric composite of the invention comprises a fabric selected from the group consisting of the woven and the knitted fabrics described, respectively, in the first, second and third embodiments described above, embedded in a rigid matrix having an initial tensile modulus at least about 300,000 psi (2068 MPa)) and coated on at least a portion of one surface with an elastomeric material having an initial tensile modulus less than about 6,000 psi (41.3 MPa), both as measured by ASTM D638. In another embodiment, a fabric composite of the invention comprises: a fabric selected from the group consisting of the inventive woven fabric described above and an inventive knitted fabric described above embedded in a matrix selected from th~ group consisting of an elastomeric material having an initial tensile modulus less than about 6,000 psi (41.3 MPa), and a rigid resin having an initial tensile modulus at least about 300,000 psi (2068 MPa), as measured by ASTM D638; and a plastic film bonded to at least a portion of one surface of said embedded fabric. In another embodiment, a fabric composite of the invention comprises a fabric selected from the group consisting of the inventive woven fabric described above and an inventive knitted fabric described above; an elastomer coated on at least a portion of at least one surface of the fabric, the elastomer having an initial tensile modulus equal to or less than about 6,000 psi (41.3 MPa) as measured by ASTM D638; and a plastic film bonded to at least a portion of the elastomer-coated surface. In another embodiment, a fabric composite of the invention comprises a fabric selected from the group consisting of the inventive woven fabric described above and an inventive knitted fabric described above, with a plastic film bonded to at least a portion of at least one of the fabric surfaces. The plastic film useful in a composite of the invention may be selected from the group consisting of polyolefins, polyamides, polyesters, polyurethanes, vinyl polymers, fluoropolymers and copolymers and mixtures thereof. Preferably, the plastic film does not bond too tightly or too loosely to the fabric or to the matrix material. Where the matrix is a block copolymer of a conjugated diene and a vinyl aromatic copolymer, the plastic film is preferably linear low density polyethylene. Similarly, where the matrix resin is a vinyl ester resin, the plastic film is preferably linear low density polyethylene. The plastic film is preferably from 0.0002 inches (5.1 micrometers) to about 0.005 inches (127 micrometers), more preferably, from about 0.0003 inches (7.6 micrometers) to about 0.003 inches (76 micrometers), in thickness. The plastic film preferably comprises from about 0.5 to about 5 percent by weight of the fabric composite. Preferably the plastic film is biaxially oriented. Preferably the plastic film is bonded to the fabric or the fabric composite by means of heat and pressure. In other embodiments, ballistically resistant articles of the invention are comprised of a plurality of sheets plied together, wherein at least a majority of said sheets are selected from the group consisting of the inventive fabrics and the inventive fabric composites described above. Complete analysis of penetration of fiber composites is still beyond present capabilities, although several mechanisms have been identified. A small pointed projectile can penetrate armor by laterally displacing fibers without breaking them. In this case, the penetration resistance depends on how readily fibers may be pushed aside, and therefore, on the nature of the fiber network. Important factors are the tightness of weave or periodicity of cross-overs in cross-plied unidirectional composites, yarn and fiber denier, fiber-to-fiber friction, matrix characteristics, interiaminar bond strengths and others. Sharp fragments can penetrate by shearing fibers. Projectiles may also break fibers in tension. Impact of a projectile on a fabric causes propagation of a strain wave through the fabric. Ballistic resistance is greater if the strain wave can propagate rapidly and unimpeded through the fabric and involve greater volumes of fiber. Experimental and analytical work has shown that in all actual cases, all penetration modes exist and that their relative importance is greatly affected by the design of the composite. In one embodiment, a ballistically resistant article of the invention is comprised of a plurality of fabric sheets plied together in stacked array, wherein at least a majority of the fabric sheets are selected from the group consisting of a calendered woven fabric having the characteristics described above and a calendered knitted fabric having the characteristics described above. In other embodiments, a ballistically resistant article of the invention is comprised of a plurality of fabric composite sheets plied together in stacked array, wherein at least a majority of the fabric composite sheets have the characteristics of any one of the inventive fabric composites previously described. In yet other embodiments, the invention consists of methods for the production of the ballistically resistant articles of the invention. One method of the invention comprises the steps of producing, by weaving or knitting, a bi-directional or multi-directional fabric having the characteristics described above, and plying sheets of the fabric in stacked array. Preferably, the fabric of the invention is calendered. Preferably, the fabric sheets are joined together by joining means such as stitching. In another embodiment, the method of the invention comprises the steps of: producing, by weaving or knitting, a bi-directional or multi-axial fabric having the characteristics described above; calendering the fabric; embedding the fabric in a matrix material selected from the group consisting of an elastomer having an initial tensile modulus less than about 6,000 psi (41.3 MPa) and a rigid resin having an initial tensile modulus at least about 300,000 psi (2068 MPa), as measured by ASTM D638, to produce a fabric composite; plying sheets of the fabric composite in stacked array; and bonding and curing the sheets of said fabric composite together to form a unitary article Preferably, a plastic sheet is bonded to at least a portion of one surface of the fabric composite prior to plying the sheets of the fabric composite in stacked array. In another embodiment, the method of the invention comprises the steps of: producing, by weaving or knitting, a bi-directional or multi-axial fabric having the characteristics described above; calendering the fabric; bonding a plastic film to at least a portion of at least one of the fabric surfaces to produce a fabric composite; plying sheets of the fabric composite in stacked array; and bonding the sheets of the fabric composite together to form a unitary article. In another embodiment, the method of the invention comprises the steps of: producing, by weaving or knitting, a bi-directional or multi-axial fabric having the characteristics described above; calendering the fabric; embedding the fabric in a matrix consisting essentially of a rigid resin having an initial tensile modulus at least about 300,000 psi (2068 MPa), as measured by ASTM D638, to produce a fabric composite; applying to the surface of the fabric composite an elastomeric material having a tensile modulus less than about 6000 psi (41.3 MPa), as measured by ASTM D638, to produce an elastomeric-coated fabric composite; plying sheets of the elastomeric-coated fabric composite in stacked array; and bonding and curing the sheets of the elastomeric-coated fabric composite together to form a unitary article. The following examples are presented to provide a more complete understanding of the invention. The specific techniques, conditions, materials, proportions and reported data set forth to illustrate the principles of the invention are exemplary and should not be construed as limiting the scope of the invention. EXAMPLES Comparative Example 1 A highly oriented, high molecular weight polyethylene yarn (SPECTRA® 900 from Honeywell International Inc.) was woven into a plain weave fabric of 21 x 21 ends/ in (8.3 ends/cm) on an American Iwer Model A2 180 loom. The polyethylene yarn was of 1200 denier and had a tenacity of 30 g/d, initial tensile modulus of 850 g/d, energy-to-break of 40 J/g, breaking strength of 36 Kg and 3.6% elongation at break. The fabric was impregnated with an epoxy vinyl ester resin [DERAKANE® 411 -45 from Dow Chemical containing 1 % LUPEROX® 256 curing agent (2,5-dimethyl-2,5 di(2-ethyl (hexanoylperoxy)hexane) from Elf Atochem]. The initial tensile modulus of the neat resin in the cured state was 490,000 psi (3379 MPa). The resin content of the fabric prepreg was 20% by weight. Seventeen sheets of fabric prepreg having dimensions of 12" x 12" (30.5 cm x 30.5 cm) were stacked together and were bonded and cured into a unitary fabric composite panel by heating in a press at 116°C under a pressure of 550 psi (3.8 MPa) for 20 minutes. The areal density of the fabric composite panel was 1.05 Ibs/sq. ft. (5.13 Kg/sq. m). Comparative Example 2 A second set of seventeen 12" x 12" (30.5 cm x 30.5 cm) sheets of the same fabric prepreg prepared in Comparative Example 1 were cut and stacked together. The sheets were bonded and cured into a unitary fabric composite panel by heating in a press at 116°C under a pressure of 550 psi (3.8 MPa) for 20 minutes. The areal density of the second fabric composite panel was 1.06 Ibs/sq. ft. (5.18 Kg/sq. m). Comparative Example 3 A highly oriented, high molecular weight polyethylene yarn
(SPECTRA® 1000 from Honeywell International Inc.) is woven into a plain weave fabric of 21 x 21 ends/ in (8.3 end/cm) on an American Iwer Model A2 180 loom. The polyethylene yarn is of 1300 denier and has a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break. The fabric is calendered by passing the fabric through opposed rolls rotating at the same speed and applying a pressure of 952 lbs/inch (163 kN/m) of fabric width at 121°C. The fabric is impregnated with an epoxy vinyl ester resin, DERAKANE® 411 -45 containing 1 % LUPEROX® 256 curing agent. The initial tensile modulus of the neat resin in a cured state is 490,000 psi (3379 MPa). The resin content of the fabric prepreg is 20% by weight. Seventeen sheets of fabric prepreg having dimensions of 12" x 12" (30.5 cm x 30.5 cm) are stacked together and are bonded and cured into a unitary fabric composite panel by heating in a press at 116°C under a pressure of 550 psi (3.8 MPa) for 20 minutes. The areal density of the fabric composite panel is 1.0 Ibs/sq. ft. (4.89 Kg/sq. m). Example 1 A bi-directional fabric of the invention was woven on an American Iwer Model A2 180 loom. The fabric consisted of four yarn sets. The first yarn and second yarn sets each consisted of parallel highly oriented, high molecular weight continuous filament polyethylene yarns (SPECTRA®1000 from Honeywell International Inc.) of 1300 denier and having a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break. Referring to the schematic representation of Figure 1 , the first yarn set 11 and the second yarn set 12 were unidirectionally oriented transverse to one another in separate planes, one above the other. A third yarn set 13 arranged transversely to the first yarn set 11 and interlaced with the yarns of the first set consisted of polyvinyl alcohol yarns of 75 denier and having a breaking strength of 0.38 Kg and 20% elongation at break. A fourth yarn set 14 arranged transversely to the second and third yarn sets and interlaced with the yarns of the second and third yarn sets consisted of the same polyvinyl alcohol yarn. The spacing of each of the four yarn sets in the fabric was 9 ends/in (3.5 ends/cm). The bi-directional fabric was calendered by passing the fabric through opposed rolls rotating at the same speed and applying a pressure of 952 lbs/inch (163 kN/m) of fabric width at 121°C. The calendered fabric was impregnated with 20% by weight of an epoxy vinyl ester resin having an initial tensile modulus in the cured state of 490,000 psi (3379 MPa) (DERAKANE® 411-45 containing 1 % LUPEROX® 256 curing agent). Thirty-four sheets of this prepreg of 12" x 12" (30.5 cm x 30.5 cm) dimension were bonded and cured into a unitary fabric composite panel by heating in a press at 116°C under a pressure of 550 psi (3.8 MPa) for 20 minutes. The areal density of the fabric composite panel was 1.01 Ibs/sq. ft. (4.94 Kg/sq. m). Example 2 A second set of thirty-four 12" x 12" (30.5 cm x 30.5 cm) sheets of the same bi-directional fabric prepreg prepared in Example 1 were cut and stacked together. The sheets were bonded and cured into a unitary fabric composite panel by heating in a press at 116°C under a pressure of 550 psi (3.8 MPa) for 20 minutes. The areal density of the second bi-directional fabric composite panel was 1.03 Ibs/sq. ft. (5.03 Kg/sq. m). Example 3 A bi-directional fabric of the invention was knitted on a weft inserted, warp knit machine from Liba, Inc. The fabric consisted of three yarn sets. The first yarn and second yarn sets each consisted of highly oriented high molecular weight continuous filament polyethylene yarns (SPECTRA® 1000 from Honeywell International Inc.) of 1300 denier and having a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break. Referring to the schematic representation of Figure 2, the first yarn set 21 and the second yarn set 22 were unidirectionally oriented transverse to one another in separate planes, one above the other. The spacing of yarns in each of the first and second yarn sets in the fabric was 9 ends/in (3.5 ends/cm). A third yarn set 23 consisting of polyvinyl alcohol of 75 denier and having 0.38 Kg breaking strength, 22% elongation at break was interleaved with both the first and second yarn sets with a tricot stitch. The bi-directional knitted fabric is calendered as in Example 1 and impregnated with 20% by weight of epoxy vinyl ester resin having an initial tensile modulus in the cured state of 490,000 psi (3379 MPa) (DERAKANE 411-45 containing 1 % Lubrisol 256 curing agent). Thirty-four sheets of this prepreg of 12" x 12" (30.5 cm x 30.5 cm) dimension are bonded and cured into a unitary fabric composite panel by heating in a press at 116°C under a pressure of 550 psi (3.8 MPa) for 20 minutes. The areal density of the fabric composite panel is 1.0 Ibs/sq. ft. (4.9 Kg/sq. m).
Ballistic Testing The fabric composite panels of Comparative Examples 1 to 3 and Examples 1 to 3 were tested for ballistic resistance by the method of MIL- STD-662E using a 17-grain FSP (fragment simulating projectile) specified by MIL-P-46593A. The velocities at which 50% of projectiles failed to penetrate the target (V50) and the specific energy absorption of the targets (SEAT) were determined. Table I below shows the results of the ballistic testing. TABLE I Ballistic Test Results on Fabric Composite Panels
Figure imgf000023_0001
It is seen that the bi-directional fabrics of Examples 1 and 2 of the present invention were superior to plain weave fabrics of Comparative Examples 1 and 2 in providing ballistic resistance to composite panels constructed from these fabrics. Results for the Example 3 bi-directional knitted fabric are anticipated to be similarly superior. Without being held to a particular theory, it is believed that the planar nature of the strong yarns in the bi-directional fabrics permits the elastic strain wave initiated by the projectile to propagate relatively unimpeded and permits greater lengths of fibers to participate in absorbing the energy of the projectile. In comparison, each interleaving of strong yarns in the plain weave fabric restricts propagation of the ballistic event through the fabric and so concentrates the energy of the projectile in a relative smaller fiber volume. The bi-directional fabric has in common with cross-plied unidirectional fabrics superior ballistic resistance, but it has in common with conventional woven fabrics, ease and economy of manufacture on conventional machinery. Comparative Example 4 1200 denier polyethylene yarn designated SPECTRA® 900 (from Honeywell International Inc.), having a tenacity of 30 g/d, initial tensile modulus of 850 g/d, energy-to-break of 40 J/g, breaking strength of 36 Kg and 3.6% elongation at break was woven into a 21 X 21 ends/inch (8.27 ends/cm) plain weave fabric. Nineteen 18 x 18 inch (45.7 X 45.7 cm) squares were cut from the fabric. The squares were stacked together to form a ballistic target without any connection joining the individual squares.
Example 4 The same woven and calendered bi-directional fabric described in Example 1 was cut into thirty-six 18 x 18 inch (45.7 X 45.7 cm) squares. The squares are stacked together to form a ballistic target without any connection joining the individual squares. Example 5 A bi-directional fabric of the invention is woven on an American Iwer Model A2 180 loom. The fabric consists of four yarn sets. The first yarn and second yarn sets each consists of highly oriented, high molecular weight continuous filament polyethylene yarns (SPECTRA®1000 from Honeywell International Inc.) of 1300 denier, having a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break. A third yarn set arranged transversely to the first yarn set and interlaced with the yarns of the first set consists of a polyurethane segmented block copolymer elastomeric yarn (DuPont LYCRA® SPANDEX brand) of 1 120 denier and having a breaking strength of 0.76 Kg and 535% elongation at break. A fourth yarn set arranged transversely to the second and third yarn sets and interlaced with the yarns of the second and third yarn sets consists of the same elastomeric yarn as that of the third yarn set. The spacing of yarns in each of the four yarn sets in the fabric is 9 ends/in (3.5 ends/cm). The fabric is cut into thirty-six 18 x 18 inch (45.7 X 45.7 cm) squares and stacked together to form a ballistic target without any connection joining the individual squares. Example 6 A bi-directional fabric of the invention is knitted on a weft inserted, warp knit machine from Liba, Inc. The fabric consists of three yarn sets. The first and second yarn sets each consist of highly oriented high molecular weight continuous filament polyethylene yarn (SPECTRA® 1000 from Honeywell International Inc.) of 1300 denier and having a tenacity of 35 g/d, initial tensile modulus of 1 150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break. The first yarn set and the second yarn set are unidirectionally oriented transverse to one another in separate planes, one above the other. The spacing of yarns in each of the first and second yarn sets in the fabric is 9 ends/in (3.5 ends/cm). A third yarn set consisting of a polyurethane segmented block copolymer (DuPont LYCRA® SPANDEX brand) elastomeric yarn of 1120 denier and having 0.76 Kg breaking strength and 535% elongation at break, is interleaved with both the first and second yarn sets with a tricot stitch. The fabric is cut into thirty-six 18 x 18 inch (45.7 X 45.7 cm) squares and stacked together to form a ballistic target without any connection joining the individual squares. Example 7 A multi-axial fabric of the invention is knitted on a weft inserted, warp knit machine from Liba, Inc. The fabric consists of four continuous filament unidirectional sets of yarns, each in its own plane, and a fifth yarn set interlacing with and binding the unidirectional yarn sets with interlocking loops. The first yarn and second yarn sets each consist of continuous filament highly oriented high molecular weight continuous filament polyethylene yarns (SPECTRA® 1000 from Honeywell International Inc.) of 1300 denier and having a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break. The third and fourth yarn sets each consist of continuous filament aramid yarns (KEVLAR®49 From E.I. Dupont de Nemours & Co,) of 1140 denier and having a tenacity of 28 g/d, initial tensile modulus of 976 g/d, energy-to-break of 25 J/g, breaking strength of 31.9 Kg and 2.9% elongation at break. The fifth interlacing yarn set consists of a partially oriented nylon 6 yarn of 300 denier having a breaking strength of 0.6 Kg and an elongation at break of 40%. The spacing of yarns in each of the unidirectional yarn sets in the fabric is 20 ends/in (7.9 ends/cm). Referring to the schematic representation of Figure 3, the first yarn set 31 and the second yarn set 32 are unidirectionally oriented transverse to one another in separate planes, one above the other. The third unidirectional yarn set 33 is at an angle of 45° to yarns in the set 32 immediately below. The fourth unidirectional yarn set 34 is transverse to the yarns in the set 33 immediately below. The fifth yarn set 35 is interlaced with and binds the unidirectional yarn sets with interlocking loops. The multi-axial fabric is calendered as described in Example 1 and squares are cut from the fabric and stacked together to form a ballistic target without any connection joining the individual squares.
Ballistic Testing The ballistic resistance of the targets prepared in Comparative Example 4 and Examples 4 to 7 are evaluated according to the National
Institute of Justice Standard NIJ 0101.03 using a clay backing and a 9mm full metal jacketed, 124 grain (8.0g) projectile. The areal densities of the targets, the velocities at which 50% of projectiles fail to penetrate the targets (V50) and the specific energy absorption of the targets (SEAT) are listed in Table II below. Table II Ballistic Test Results on Stacked Fabric Targets
Figure imgf000027_0001
It is expected that the bi-directional and multi-axial fabrics of the invention provide comparable or better resistance to penetration by a ballistic projectile. Moreover, the fabrics containing the elastomeric yarn are able to conform more readily and comfortably to the wearer when incorporated in soft body armor. Comparative Example 5 A highly oriented, high molecular weight polyethylene yarn (SPECTRA® 900 from Honeywell International Inc.) was woven into a plain weave fabric of 21 x 21 ends/ in (8.3 end/cm) on an American Iwer Model A2 180 loom. The polyethylene yarn was of 1200 denier and had a tenacity of 30 g/d, initial tensile modulus of 850 g/d, energy-to-break of 40 J/g, breaking strength of 36 Kg and 3.6% elongation at break. One surface of the fabric was coated with a styrene-isoprene-styrene block copolymer elastomer designated KRATON® D1107 having an initial tensile modulus of 200 psi (1.4 MPa). The elastomer was 5% by weight of the coated fabric. A linear low density polyethylene film having a thickness of 0.00035 inches (8.89 micrometers) was laminated to the elastomeric surface of the fabric by passing the fabric, the polyethylene film and an outer polyester release film through opposed rolls operating at the same speed under a roll pressure of 635 lbs/inch (109 kN/m) at 121 °C. The release film was then stripped from the polyethylene-fabric composite. The polyethylene film constituted 3.5 wt.% of the fabric composite. Nineteen 18 x 18 inch (45.7 X 45.7 cm) squares were cut from the fabric composite and were stacked together to form a ballistic target without any connection joining the individual squares. The target areal density was 1.01 Ib/sq.ft. (4.94 Kg/sq.m). Comparative Example 6 A cross-plied unidirectional fabric composite (SPECTRA SHIELD® LCR from Honeywell International Inc.) was cut into 18 x 18 inch (45.7 X 45.7 cm) squares. The fabric composite was comprised of highly oriented, high molecular weight polyethylene yarns having a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4%o elongation at break in an elastomeric matrix laminated with a polyethylene film. Twenty-four squares were stacked together to form a ballistic target without any connection joining the individual squares. The target areal density was 0.75 Ib/sq.ft (3.66 Kg/sq.m). Example 8 The same bi-directional woven fabric as described in Example 1 is calendered as described in Example 1 and is impregnated with a styrene- isoprene-styrene block copolymer elastomer designated KRATON® D1107 having an initial tensile modulus of 200 psi (1.4 MPa). The elastomeric matrix is 20%o by weight of the fabric composite. The fabric composite is laminated with a 0.0015 in. (38 micrometers) thick biaxially oriented low density polyethylene film on each surface. Thirty-five squares are cut from the laminated fabric composite and stacked together to form a ballistic target without any connection joining the individual squares. The target areal density is 1.05 Ib/sq.ft (5.13 Kg/sq. m). Example 9 The same bi-directional knitted fabric as described in Example 3 is calendered as described in Example 1 and is impregnated with a styrene- isoprene-styrene block copolymer elastomer designated KRATON® D1107 having an initial tensile modulus of 200 psi (1.4 MPa). The elastomeric matrix is 20% by weight of the fabric composite. The fabric composite is laminated with a 0.0015 in. (38 micrometers) thick biaxially oriented low density polyethylene film on each surface. Thirty-five squares are cut from the laminated fabric composite and stacked together to form a ballistic target without any connection joining the individual squares. The target areal density is 1.02 Ib/sq.ft (4.98 Kg/sq. m). Example 10 The same multi-axial fabric described in Example 7 is calendered as described in Example 1 and is impregnated with a styrene-isoprene- styrene block copolymer elastomer designated KRATON® D1107 having an initial tensile modulus of 200 psi (1.4 MPa). The elastomeric matrix is 20% by weight of the fabric composite. The fabric composite is laminated with a 0.0015 in. (38 micrometers) thick biaxially oriented low density polyethylene film on each surface. Squares are cut from the laminated fabric composite and stacked together to form a ballistic target without any connection joining the individual squares. The target areal density is 1.02 Ib/sq.ft (4.98 Kg/sq. m).
Ballistic Testing The ballistic resistance of the targets prepared in Comparative Examples 5 and 6 and Examples 5 to 9 are evaluated according to the National Institute of Justice Standard NIJ 0101.03 using a clay backing and a 9mm full metal jacketed, 124 grain (8.0g) projectile. The areal densities of the targets, the velocities at which 50% of projectiles fail to penetrate the targets (V50) and the specific energy absorption of the targets (SEAT) are listed in Table III below.
Table III Ballistic Results on Stacked Fabric Composites
Figure imgf000030_0001
The bi-directional and multi-axial fabric composites of the invention are expected to have ballistic resistance (SEAT) intermediate to the plain weave fabric composites and the cross-plied unidirectional fabric composites. Example 11 A bi-directional fabric of the invention is woven on an American Iwer Model A2 180 loom. The fabric consists of four yarn sets. The first and second yarn sets each consists of highly oriented, high molecular weight polyethylene yarns (SPECTRA®1000 from Honeywell International Inc.) of 1300 denier and having a tenacity of 35 g/d, initial tensile modulus of 1150 g/d, energy-to-break of 45 J/g, breaking strength of 45 Kg and 3.4% elongation at break. A third yarn set arranged transversely to the first yarn set and interlaced with the yarns of the first set consists of a water soluble polyvinyl alcohol yarn of 100 denier and having a breaking strength of 0.2 Kg and 45% elongation at break. A fourth yarn set arranged transversely to the second and third yarn sets and interlaced with the yarns of the second and third yarn sets is comprised of the same polyvinyl alcohol yarn. The spacing of yarns in each of the four yarn sets in the fabric is 9 ends/in (3.5 ends/cm).
Having thus described the invention in rather full detail, it will be understood that such detail need not be strictly adhered to but that further changes and modifications may suggest themselves to one skilled in the art, all falling within the scope of the invention as defined by the subjoined claims.

Claims

CLAIMSWhat is claimed is:
1. A woven fabric comprising: a) a first set of continuous filament unidirectional yarns lying in a first plane; b) a second set of continuous filament unidirectional yarns lying in a second plane above said first plane and arranged transversely to said first set of yarns; c) a third set of yarns arranged transversely to said first set of yarns and interlaced with said first set of yarns, each yarn of the third set lying above some and below the remaining yarns of said first set; d) a fourth set of yarns arranged transversely to said second set and said third set of yarns and interlaced with said second and thirds sets of yarns, each yarn of the fourth set lying above some and below the remaining yarns of said second and third sets of yarns; wherein each of said first and second sets of yarns have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or greater than about 22 J/g as measured by ASTM D2256; and wherein each of said first and second sets of yarns, in proportion to the yarns comprising each of said third and fourth sets of yarns have at least twice the breaking strength, and half the elongation to break.
2. The woven fabric of claim 1 , wherein the yarns of said first and second sets are each selected independently from the group consisting of continuous filament highly oriented high molecular weight polyolefins, aramids, polybenzazoles and blends thereof.
3. The woven fabric of claim 1 , wherein the yarns of said first and second sets of yarns are each selected independently from the group consisting of continuous filament highly oriented high molecular weight polyethylene, poly(p-phenylene terephthalamide, poly(m-phenylene isophthalamide), poly(benzobisoxazole, poly(benzobisthiazole), poly(benzobisimidazole) and blends thereof.
4. The woven fabric of claim 1 , wherein the yarns said third and fourth sets are each selected independently from the group consisting of polyamide, polyester, polyvinyl alcohol, polyolefin, polyacrylonitrile, polyurethane, cellulose acetate, cotton, wool, and copolymers and blends thereof.
5. The woven fabric of claim 1 , wherein the yarns of at least one of said third and fourth sets of yarns is comprised of an elastomeric fiber.
6. The woven fabric of claim 1 , wherein the yarns of at least one of said third and fourth sets of yarns is comprised of staple fibers.
7. The woven fabric of claim 1 , wherein the yarns of each of said first and second sets of yarns, in proportion to the yarns comprising each of said third and fourth sets of yarns, have at least three times the breaking strength, and one-third the elongation to break.
8. The woven fabric of claim 1 , wherein the yarns of each of said first and second sets of yarns, in proportion to the yarns comprising each of said third and fourth sets of yarns, have at least three times the breaking strength, and one-tenth the elongation to break.
9. The woven fabric of claim 1 , wherein the spacing of each of said first, second, third, and fourth sets of yarns is independently from about 5 ends/in (1.97 ends/cm) to about 50 ends/in (19.7 ends/cm).
10. The woven fabric of claim 1 , wherein the spacing of each of said first second, third, and fourth sets of yarns is independently from about 8 ends/in (3.15 ends/cm) to about 20 ends/in (7.87 ends/cm).
11. The woven fabric of claim 1 , wherein said woven fabric has been calendered.
12. A knitted fabric comprising: a) a first set of continuous filament unidirectional yarns lying in a first plane; b) a second set of continuous filament unidirectional yarns lying in a second plane above said first plane, and arranged transversely to said first set of yarns; and c) a third set of yarns forming interlocking loops interlaced with said first and said second set of yarns, each yarn of the third set lying above some and below the remaining yarns of said first set and said second set of yarns; wherein the yarns of said first and second sets have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or greater than about 22 J/g as measured by ASTM D2256; and wherein the yarns of each of said first and second sets, in proportion to the yarns comprising said third set of yarns have at least about twice the breaking strength, and about one-half the elongation to break.
13. A knitted fabric comprising: a) a set of continuous filament unidirectional yarns in a bottom plane; b) a plurality of intermediate planes above said bottom plane each defined by a set of continuous filament unidirectional yarns; c) a set of continuous filament unidirectional yarns in a top plane; d) a set of interlacing yarns forming interlocking loops, said loops binding the unidirectional yarns of all planes; wherein the set of unidirectional yarns in each said plane is rotated at an angle relative to the set of unidirectional yarns in adjacent planes; wherein the yarns of each set of unidirectional yarns have tenacity's equal to or greater than about 15 g/d, initial tensile moduli equal to or greater than about 400 g/d and energies-to-break equal to or greater than about 22 J/g, all as measured by ASTM D2256; and wherein the yarns of each set of unidirectional yarns, in proportion to the yarns comprising said interlacing yarns, have at least about twice the breaking strength and, at most, about one-half the percent elongation to break.
14. The knitted fabric of either claim 12 or 13, wherein each of said sets of continuous filament unidirectional yarns is selected independently from the group consisting of continuous filament highly oriented high molecular weight polyolefins, aramids, polybenzazole and blends thereof.
15. The knitted fabric of either claim 12 or 13, wherein each of said sets of continuous filament unidirectional yarn is selected independently from the group consisting of continuous filament highly oriented high molecular weight polyethylene, poly(p-phenylene terephthalamide, poly(m~ phenylene isophthalamide), poly(benzobisoxazole), poly(benzobisthiazole), poly(benzobisimidazole) and blends thereof.
16. The knitted fabric of either claim 12 or 13, wherein said interlacing set of yarns is selected from the group consisting of polyamide, polyester, polyvinyl alcohol, polyolefin, polyacrylonitrile, polyurethane, cellulose acetate, cotton, wool, and copolymers and blends thereof.
17. The knitted fabric of either claim 12 or 13, wherein said interlacing set of yarns is comprised of an elastomeric fiber.
18. The knitted fabric of either claim 12 or 13, wherein said interlacing set of yarns is comprised of staple fibers.
19. The knitted fabric of either claim 12 or 13, wherein each of said sets of continuous filament unidirectional yarns, in proportion to the yarns comprising said interlacing set of yarns, has at least three times the breaking strength, and one-tenth the elongation to break.
20. The knitted fabric of either claim 12 or 13, wherein the spacing of each of said sets of continuous filament unidirectional yarns is independently selected from a range of about 5 ends/in (1.97 ends/cm) to about 50 ends/in (19.7 ends/cm).
21. The knitted fabric of either claim 12 or 13, wherein the range is about 8 ends/in (3.15 ends/cm) to about 20 ends/in (7.87 ends/cm).
22. The knitted fabric of either claim 12 or 13, wherein the fabric has been calendered.
23. A fabric composite comprising a fabric selected from the group consisting of a woven fabric having the characteristics as recited in claim 1 , a knitted fabric having the characteristics as recited in claim 12, and a knitted fabric having the characteristics as recited in claim 13, embedded in a matrix selected from the group consisting of an elastomeric matrix having an initial tensile modulus less than about 6,000 psi (41.3 MPa) and a rigid matrix having an initial tensile modulus at least about 300,000 psi (2068 MPa) as measured by ASTM D638.
24. The fabric composite of claim 23, wherein said matrix is a rigid matrix having an initial tensile modulus of at least about 300,000 psi (2068 MPa) ' as measured by ASTM D638, and wherein coated on at least a portion of one surface of said fabric composite is an elastomeric material having an initial tensile modulus less than about 6,000 psi (41.3 MPa) as measured by ASTM D638.
25. The fabric composite of claim 23, wherein the fabric is calendered.
26. The fabric composite of claim 25, wherein a plastic film is bonded to at least a portion of one of the surfaces of said fabric composite.
27. The fabric composite of claim 25, wherein an elastomer is coated on at least a portion of at least one surface of said fabric, said elastomer having an initial tensile modulus equal to or less than about 6,000 psi (41.3 MPa), as measured by ASTM D638; and a plastic film is bonded to at least a portion of said elastomer coated surface.
28. A fabric composite comprising a fabric selected from the group consisting of a calendered woven fabric having the characteristics as recited in claim 11 and a calendered knitted fabric having the characteristics as recited in claim 22 with a plastic film bonded to at least a portion of at least one of said fabric surfaces.
29. A ballistically resistant article comprised of a plurality of fabric sheets plied together in stacked array, wherein at least a majority of said fabric sheets are selected from the group consisting of a woven fabric having the characteristics as recited in claim 1 , a knitted fabric having the characteristics as recited in claim 12, and a knitted fabric as recited in claim 13.
30. The ballistically resistant article of claim 29, wherein the fabric has been calendered.
31. The ballistically resistant article of claim 30, wherein at least a portion of said fabric sheets are fabric composite sheets embedded in a matrix selected from the group consisting of an elastomeric matrix having an initial tensile modulus less than about 6,000 psi (41.3 MPa) and a rigid matrix having an initial tensile modulus at least about 300,000 psi (2068 MPa), as measured by ASTM D638.
32. The ballistically resistant article of claim 31 , wherein the matrix is a rigid matrix having an initial tensile modulus at least about 300,000 psi (2068 MPa), as measured by ASTM D638, and coated on at least a portion of one surface of said fabric composite sheets is an elastomeric material having an initial tensile modulus less than about 6,000 psi (41.3 MPa), as measured by ASTM D638.
33. The ballistically resistant article of claims 27 to 32 additionally comprising a hard face member selected from the group consisting of a metal, a ceramic, a glass, a metal filled composite, a ceramic filled composite or a glass filled composite.
34. A method of producing a ballistically resistant article comprising the steps of: weaving a fabric with the characteristics as recited in claim 1 ; and plying sheets of said fabric in a stacked array.
35. A method of producing a ballistically resistant article comprising the steps of: weaving a fabric with the characteristics as recited in claim 11 ; and plying sheets of said fabric in a stacked array.
36. A method of producing a ballistically resistant article comprising the steps of: weaving a fabric with the characteristics as recited in claim 22; and plying sheets of said fabric in a stacked array.
37. The method recited in any of claims 34 to 36 additionally comprising the step of joining said fabric sheets together by joining means.
38. A method of producing a ballistically resistant article comprising the steps of: a) weaving a fabric with the characteristics as recited in claim 1 1 ; b) embedding the fabric in a matrix selected from the group consisting of an elastomer having an initial tensile modulus less than about 6,000 psi (41.3 MPa) and a rigid resin having an initial tensile modulus at least 300,000 psi (2068 MPa), as measured by ASTM D638, to produce a fabric composite; d) plying sheets of said fabric composite in a stacked array; and e) bonding and curing said sheets of said fabric composite together to form a unitary article.
39. A method as recited in claim 38 additionally including the step of bonding a plastic sheet to at least a portion of one surface of said fabric composite prior to plying sheets of said fabric composite in stacked array.
40. A method of producing a ballistically resistant article comprising the steps of: a) weaving a fabric with the characteristics as recited in claim 11 ; b) bonding a plastic film to at least a portion of at least one of said fabric surfaces to produce a fabric composite; c) plying sheets of said fabric composite in a stacked array; and d) bonding said sheets of said fabric composite together to form a unitary article.
41. A method of producing a ballistically resistant article comprising the steps of: a) knitting a fabric with the characteristics as recited in claim 22; b) embedding the fabric in a matrix selected from the group consisting of an elastomer having an initial tensile modulus less than about 6,000 psi (41.3 MPa) and a rigid resin having an initial tensile modulus at least about 300,000 psi (2068 MPa), as measured by ASTM D638, to produce a fabric composite; c) plying sheets of said fabric composite in a stacked array; d) bonding and curing said sheets of said fabric composite together to form a unitary article.
42. A method of producing a ballistically resistant article comprising the steps of: a) knitting a fabric with the characteristics as recited in claim 22; b) bonding a plastic film to at least a portion of at least one of said fabric surfaces to produce a fabric composite; c) plying sheets of said fabric composite in a stacked array; d) bonding said sheets of said fabric composite together to form a unitary article.
43. A method of producing a ballistically resistant article comprising the steps of: a) weaving a fabric with the characteristics as recited in claim 11 ; b) embedding the fabric in a matrix consisting essentially of a rigid resin having an initial tensile modulus at least about 300,000 psi (2068 MPa), as measured by ASTM D638, to produce a fabric composite; c) applying to the surface of said fabric composite an elastomeric material having a tensile modulus less than about 6000 psi (41.3 MPa), as measured by ASTM D638, to produce an elastomeric coated fabric composite; d) plying sheets of said elastomeric coated fabric composite in a stacked array; and e) bonding and curing said sheets of said elastomeric coated fabric composite together to form a unitary article.
PCT/US2003/017706 2002-06-07 2003-06-05 Bi-directional and multi-axial fabrics and fabric composites WO2005028724A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA 2500733 CA2500733C (en) 2002-06-07 2003-06-05 Bi-directional and multi-axial fabrics and fabric composites
EP03817701.0A EP1585853B1 (en) 2002-06-07 2003-06-05 Bi-directional and multi-axial fabrics and fabric composites
ES03817701.0T ES2607808T3 (en) 2002-06-07 2003-06-05 Bi-directional and multi-axial fabrics and composite materials of fabrics
JP2005508829A JP4318691B2 (en) 2002-06-07 2003-06-05 Bidirectional and multiaxial fabrics and fabric composites
MXPA04012304A MXPA04012304A (en) 2002-06-07 2003-06-05 Bi-directional and multi-axial fabrics and fabric composites.
IL16560003A IL165600A0 (en) 2002-06-07 2003-06-05 Bi-directional and multi-axial fabrics and fabric composites
IL16560004A IL165600A (en) 2002-06-07 2004-12-07 Bi-directional woven or knitted multi-axial fabrics and fabric composites

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US38720102P 2002-06-07 2002-06-07
US60/387,201 2002-06-07
US10/179,715 2002-06-25
US10/179,715 US6841492B2 (en) 2002-06-07 2002-06-25 Bi-directional and multi-axial fabrics and fabric composites

Publications (2)

Publication Number Publication Date
WO2005028724A2 true WO2005028724A2 (en) 2005-03-31
WO2005028724A3 WO2005028724A3 (en) 2005-09-22

Family

ID=29714768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/017706 WO2005028724A2 (en) 2002-06-07 2003-06-05 Bi-directional and multi-axial fabrics and fabric composites

Country Status (12)

Country Link
US (2) US6841492B2 (en)
EP (2) EP1585853B1 (en)
JP (1) JP4318691B2 (en)
KR (1) KR101036241B1 (en)
AR (1) AR040161A1 (en)
CA (1) CA2500733C (en)
ES (1) ES2607808T3 (en)
IL (2) IL165600A0 (en)
MX (1) MXPA04012304A (en)
MY (1) MY139764A (en)
TW (1) TW200401056A (en)
WO (1) WO2005028724A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008030980A1 (en) * 2006-09-06 2008-03-13 Dow Global Technologies Inc. Knit fabrics comprising olefin block interpolymers
EP2261406A1 (en) 2009-06-08 2010-12-15 F.LLI Citterio S.p.A. Method and apparatus for continuous production of a textile structure resistant to perforation and penetration and textile structure thus obtained
WO2011113751A1 (en) 2010-03-18 2011-09-22 Toho Tenax Europe Gmbh Stitched multiaxial scrims
EP2434250A1 (en) 2010-09-23 2012-03-28 Fratelli Citterio S.p.A. An impact-resistant and penetration-resistant textile structure, method for producing such textile structure and apparatus thereof
US10895437B2 (en) 2012-10-16 2021-01-19 Blucher Gmbh Ballistic underwear

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820565B2 (en) * 2001-05-03 2010-10-26 Barrday Inc. Densely woven quasi-unidirectional fabric for ballistic applications
US6841492B2 (en) * 2002-06-07 2005-01-11 Honeywell International Inc. Bi-directional and multi-axial fabrics and fabric composites
US20040048538A1 (en) * 2002-09-05 2004-03-11 Safeboard Ab Penetration resistant article
US20040048109A1 (en) * 2002-09-05 2004-03-11 Safeboard Ab Penetration resistant article
US7407900B2 (en) * 2003-05-29 2008-08-05 Barrday, Inc. Unique ballistic composition
WO2005084408A2 (en) 2004-03-03 2005-09-15 Warwick Mills, Inc. Continuous and discontinuous protective fiber composites
ES2226582B1 (en) * 2004-06-04 2006-07-01 Vives Vidal, Vivesa, S.A. PROCEDURE FOR THE MANUFACTURE OF A WRAPPING FABRIC FOR A CLOTHING CLOTHING AND ELASTIC FABRIC OBTAINED.
US20060121805A1 (en) * 2004-12-07 2006-06-08 Krulic Charlie B Non-woven, uni-directional multi-axial reinforcement fabric and composite article
ITTO20050193A1 (en) * 2005-03-25 2006-09-26 Roberto Bernasconi TEXTILE PRODUCTS FOR CLOTHING
US7851388B2 (en) * 2005-05-26 2010-12-14 University Of Massachusetts Lead pellet recovery fabrics
WO2006129133A1 (en) * 2005-05-31 2006-12-07 Poly-Technology Inc. S.A. Bullet-proof armour effective against small arms and production method thereof
US7629277B2 (en) * 2005-11-23 2009-12-08 Honeywell International Inc. Frag shield
JP2009518618A (en) 2005-12-06 2009-05-07 ハネウェル・インターナショナル・インコーポレーテッド Flame retardant shield
CA2630153A1 (en) * 2005-12-08 2007-06-14 E.I. Du Pont De Nemours And Company Multiaxial fabric with strain-responsive viscous liquid polymers
EP1973433B1 (en) * 2005-12-08 2013-11-27 E.I. Du Pont De Nemours And Company Multiaxial fabric for ballistic applications
US7636948B1 (en) * 2006-01-26 2009-12-29 Lineweight Llc Combat shirt and armor system
US9170071B2 (en) * 2006-05-01 2015-10-27 Warwick Mills Inc. Mosaic extremity protection system with transportable solid elements
FR2902802B1 (en) * 2006-06-21 2008-12-12 Snecma Propulsion Solide Sa FIBROUS REINFORCING STRUCTURE FOR A PIECE OF COMPOSITE MATERIAL AND PART COMPRISING THE SAME
US8759236B2 (en) * 2006-09-25 2014-06-24 Honeywell International Inc. Polyolefin fiber reinforced rubber
US7622405B1 (en) 2006-09-26 2009-11-24 Honeywell International Inc. High performance same fiber composite hybrids by varying resin content only
US8695112B2 (en) * 2006-09-26 2014-04-15 Honeywell International Inc. Flexible body armor with semi-rigid and flexible component
US8689671B2 (en) 2006-09-29 2014-04-08 Federal-Mogul World Wide, Inc. Lightweight armor and methods of making
EP1908364A1 (en) * 2006-10-04 2008-04-09 Riri Group S.A. A fluid-tight slide fastener
EP1908580A1 (en) * 2006-10-05 2008-04-09 Novameer B.V. Process for producing flexible panels comprising laminates of unidirectionally arranged polymeric tapes
US7614258B2 (en) * 2006-10-19 2009-11-10 C.R. Bard, Inc. Prosthetic repair fabric
US8166569B1 (en) 2006-11-29 2012-05-01 E. I. Du Pont De Nemours And Company Multiaxial polyethylene fabric and laminate
US7762175B1 (en) 2006-11-30 2010-07-27 Honeywell International Inc. Spaced lightweight composite armor
NL2000406C2 (en) * 2006-12-22 2008-06-24 Tno Method and device for protecting objects against rocket-driven grenades (RPGs).
ES2388935T3 (en) * 2007-01-10 2012-10-19 Fatzer Ag Drahtseilfabrik Device to defend against hollow load projectiles
US7994074B1 (en) * 2007-03-21 2011-08-09 Honeywell International, Inc. Composite ballistic fabric structures
US7993478B2 (en) 2007-03-28 2011-08-09 Honeywell International, Inc. Method to apply multiple coatings to a fiber web
GB2448477B (en) * 2007-04-20 2012-11-07 Np Aerospace Ltd Vehicle armour
PL2044855T3 (en) * 2007-10-04 2011-05-31 Riri Sa A fluid-tight slide fastener
EP2207668B1 (en) 2007-10-30 2014-12-10 Warwick Mills, Inc. Soft plate soft panel bonded multi layer armor materials
FR2924210B1 (en) * 2007-11-23 2013-07-05 Tda Armements Sas BALISTICAL PROTECTION DEVICE
US8124548B2 (en) 2007-12-21 2012-02-28 Honeywell International Inc. Low weight and high durability soft body armor composite using silicone-based topical treatments
US10590569B2 (en) * 2007-12-28 2020-03-17 Albany International Corp. Ultra-resilient fabric
CA2711024C (en) * 2007-12-28 2016-11-29 Albany International Corp. Ultra-resilient fabric
US10590571B2 (en) * 2007-12-28 2020-03-17 Albany International Corp. Ultra-resilient pad
US10588375B2 (en) * 2007-12-28 2020-03-17 Albany International Corp. Ultra-resilient pad
TWI499497B (en) * 2008-01-17 2015-09-11 Ole-Bendt Rasmussen Film material exhibiting textile properties, and method and apparatus for its manufacture
US7994075B1 (en) 2008-02-26 2011-08-09 Honeywell International, Inc. Low weight and high durability soft body armor composite using topical wax coatings
US7964050B2 (en) * 2008-06-04 2011-06-21 Barrday, Inc. Method for processing a composite
GB0811480D0 (en) * 2008-06-23 2008-07-30 Bcb Int Ltd Articulated modular armour
US9416471B2 (en) 2008-06-27 2016-08-16 Herniamesh S.R.L. Lightweight quadriaxial surgical mesh
ITMI20081186A1 (en) * 2008-06-27 2009-12-28 Herniamesh S R L LIGHTWEIGHT SURGICAL MESH.
US8001999B2 (en) * 2008-09-05 2011-08-23 Olive Tree Financial Group, L.L.C. Energy weapon protection fabric
US7805767B2 (en) * 2008-10-06 2010-10-05 Bae Systems Land & Armaments Body armor plate having integrated electronics modules
US20100154621A1 (en) * 2008-11-11 2010-06-24 University Of Delaware Ballistic Resistant Fabric Armor
US9204954B2 (en) * 2008-12-15 2015-12-08 Allergan, Inc. Knitted scaffold with diagonal yarn
US9326840B2 (en) * 2008-12-15 2016-05-03 Allergan, Inc. Prosthetic device and method of manufacturing the same
US9308070B2 (en) 2008-12-15 2016-04-12 Allergan, Inc. Pliable silk medical device
US9204953B2 (en) * 2008-12-15 2015-12-08 Allergan, Inc. Biocompatible surgical scaffold with varying stretch
KR101707249B1 (en) * 2008-12-15 2017-02-15 알러간, 인코포레이티드 A prosthetic device and method of manufacturing the same
DE502009000591D1 (en) * 2009-01-09 2011-06-09 Norbert Neher Insect repellent fabric
WO2010091476A1 (en) * 2009-02-16 2010-08-19 Rmit University Ballistic fabric
WO2010108130A1 (en) 2009-03-20 2010-09-23 Warwick Mills, Inc. Thermally vented body armor assembly
KR101009722B1 (en) * 2009-05-07 2011-01-19 지상빈 textile mat
US8898821B2 (en) 2009-05-19 2014-12-02 Southern Mills, Inc. Flame resistant fabric with anisotropic properties
WO2010142028A1 (en) * 2009-06-11 2010-12-16 Barrday Inc. Rotationally offset penetration-resistant articles
US7836917B1 (en) * 2009-11-18 2010-11-23 Paradox LLC Weaving connectors for three dimensional textile products
US7841369B1 (en) * 2009-11-18 2010-11-30 vParadox LLC Weaving process for production of a full fashioned woven stretch garment with load carriage capability
US8502506B2 (en) * 2010-01-15 2013-08-06 Bae Systems Aerospace & Defense Group Inc. Portable electrical power source for incorporation with an armored garment
EP2556324A4 (en) 2010-04-08 2015-09-30 Warwick Mills Inc Titanium mosaic body armor assembly
US7964518B1 (en) 2010-04-19 2011-06-21 Honeywell International Inc. Enhanced ballistic performance of polymer fibers
US8080486B1 (en) 2010-07-28 2011-12-20 Honeywell International Inc. Ballistic shield composites with enhanced fragment resistance
US8561213B2 (en) 2010-11-17 2013-10-22 Bcb International Limited Multi-paneled protective undergarment
US8535484B2 (en) 2011-01-21 2013-09-17 Albany International Corp. Ultra-resilient fabric and method of making thereof
US20120278981A1 (en) * 2011-04-28 2012-11-08 Steve Ialenti Protective cut-resistant sportswear material
US9706804B1 (en) 2011-07-26 2017-07-18 Milliken & Company Flame resistant fabric having intermingled flame resistant yarns
US10082372B1 (en) 2011-08-29 2018-09-25 ShotStop Ballistics LLC Material for and the method of manufacture for ballistic shielding
US9944041B1 (en) 2011-08-29 2018-04-17 Shot Stop Ballistics LLC System, method and article of manufacture for ballistic shielding
US9180623B1 (en) 2011-08-29 2015-11-10 Vall A. Iliev System, method and article of manufacture for ballistic shielding
US10052843B1 (en) 2011-08-29 2018-08-21 Shot Stop Ballistics LLC Material for the manufacture for ballistic shielding
KR20140073488A (en) * 2011-09-02 2014-06-16 백조이 오쏘틱스 엘엘씨 Cushion device
US9168719B2 (en) 2011-09-06 2015-10-27 Honeywell International Inc. Surface treated yarn and fabric with enhanced physical and adhesion properties and the process of making
US20130059496A1 (en) 2011-09-06 2013-03-07 Honeywell International Inc. Low bfs composite and process of making the same
US9023452B2 (en) 2011-09-06 2015-05-05 Honeywell International Inc. Rigid structural and low back face signature ballistic UD/articles and method of making
US9023451B2 (en) 2011-09-06 2015-05-05 Honeywell International Inc. Rigid structure UHMWPE UD and composite and the process of making
US9023450B2 (en) 2011-09-06 2015-05-05 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making
EP2764150B1 (en) * 2011-10-07 2015-07-15 Gustav Gerster GmbH & Co. KG Drapable laid scrim device
US9138961B2 (en) 2011-10-19 2015-09-22 Honeywell International Inc. High performance laminated tapes and related products for ballistic applications
CN102501521B (en) * 2011-11-23 2014-07-23 周庆 Flexible bulletproof compound material with novel resin matrix and processing method thereof
US20130149103A1 (en) 2011-12-08 2013-06-13 Honeywell International Inc. Ballistic materials for enhanced energy absorption and fan casings including the same
US9386816B2 (en) 2012-02-14 2016-07-12 International Textile Group, Inc. Fire resistant garments containing a high lubricity thermal liner
US9291433B2 (en) * 2012-02-22 2016-03-22 Cryovac, Inc. Ballistic-resistant composite assembly
US9169581B2 (en) 2012-02-24 2015-10-27 Honeywell International Inc. High tenacity high modulus UHMW PE fiber and the process of making
WO2013136886A1 (en) * 2012-03-12 2013-09-19 積水化学工業株式会社 Impact-absorbing member, protective clothing, and process for producing impact-absorbing member
US9273418B2 (en) 2012-05-17 2016-03-01 Honeywell International Inc. Hybrid fiber unidirectional tape and composite laminates
US10132010B2 (en) 2012-07-27 2018-11-20 Honeywell International Inc. UHMW PE fiber and method to produce
CN104685117B (en) 2012-08-06 2018-02-02 霍尼韦尔国际公司 Polymeric tapes, non-woven laminating material, textile fabric and the method for manufacturing them
CA2896084C (en) 2012-12-21 2019-10-22 Southern Mills, Inc. Fabrics with ballistic protection and garments made from same
JP6084041B2 (en) * 2013-01-10 2017-02-22 株式会社島精機製作所 Knitted substrate forming method, knitted substrate, and fiber reinforced plastic
DE202013001232U1 (en) * 2013-02-06 2014-05-07 Rökona-Textilwerk GmbH Cut protection layer for a cut protection textile, cut protection textile and this protective work clothing
RU2643798C2 (en) * 2013-02-19 2018-02-06 Тейджин Арамид Гмбх Two-ply woven structure with high-strength and thermoplastic fibers
US9243354B2 (en) 2013-03-15 2016-01-26 Honeywell International Inc. Stab and ballistic resistant articles
US9845699B2 (en) 2013-03-15 2017-12-19 Gkn Aerospace Services Structures Corp. Fan spacer having unitary over molded feature
CN103590185B (en) * 2013-10-24 2016-05-18 常州市宏发纵横新材料科技股份有限公司 A kind of twin shaft is to the weaving method of blended fabric
US10441994B2 (en) * 2014-01-09 2019-10-15 Moshe Ore Protecting net
US11046049B2 (en) 2014-03-19 2021-06-29 The Boeing Company Fabrication of composite laminates using temporarily stitched preforms
KR101827566B1 (en) 2014-06-13 2018-02-08 타이완 파이호 리미티드 Textile with elasticity
US10986878B2 (en) * 2014-10-01 2021-04-27 Shanghai Uniwise International Co. Ltd. Composite waterproof breathable sock with two-way extensible properties
US9909240B2 (en) 2014-11-04 2018-03-06 Honeywell International Inc. UHMWPE fiber and method to produce
US20160209179A1 (en) * 2015-01-21 2016-07-21 Umm Al-Qura University Ballistic resistant article and method of producing same
JP5896059B2 (en) * 2015-03-11 2016-03-30 東レ株式会社 Woven fabric and method for producing the same
CN106151860A (en) * 2015-04-02 2016-11-23 龙友焜 A kind of pultrusion bar with particular reinforcement fiber distributed architecture
US10048046B1 (en) 2015-04-30 2018-08-14 Shot Stop Ballistics Shooting range booth assembly
US10405594B2 (en) 2015-05-21 2019-09-10 International Textile Group, Inc. Inner lining fabric
WO2016195974A1 (en) * 2015-06-02 2016-12-08 Apex Biomedical Company, Llc Energy-absorbing structure with defined multi-phasic crush properties
DE102015008810A1 (en) * 2015-07-03 2017-01-05 BLüCHER GMBH Protective material with splinter, stitch, cut, weft and / or shock protection function
US10272640B2 (en) 2015-09-17 2019-04-30 Honeywell International Inc. Low porosity high strength UHMWPE fabrics
US20170297295A1 (en) 2016-04-15 2017-10-19 Honeywell International Inc. Blister free composite materials molding
KR101761658B1 (en) * 2016-12-07 2017-07-26 김양중 The Basalt sheet for earthquake-proof or strengthening structurally
CN106702573B (en) * 2017-01-04 2018-05-18 海丰名仕度高新科技服饰有限公司 A kind of ultralight bulletproof cloth and preparation method thereof
EP3582948A4 (en) * 2017-02-16 2021-01-13 Barrday Inc. Ballistic resistant article with thermoset polyurethane matrix
CN107815776A (en) * 2017-10-24 2018-03-20 江苏金风科技有限公司 Biaxially fabric and its manufacture method containing drawing and extruding bar
CN107780055A (en) * 2017-10-24 2018-03-09 江苏金风科技有限公司 Uniaxially fabric and its manufacture method containing drawing and extruding bar
CN108442002A (en) * 2018-03-07 2018-08-24 如皋市丁堰纺织有限公司 A kind of high emulation cashmere blended yarn and its fabric
CN108708066B (en) * 2018-04-04 2020-03-31 绍兴必安防护科技有限公司 Preparation method of bulletproof, anti-cutting and flame-retardant fabric
US11530513B2 (en) * 2018-07-20 2022-12-20 Honeywell International Inc. Ballistic translation efficiency of high performance fibers
WO2020123334A1 (en) 2018-12-10 2020-06-18 Boston Materials, Inc. Systems and methods for carbon fiber alignment and fiber-reinforced composites
CA3171137A1 (en) 2019-03-28 2020-10-01 Southern Mills, Inc. Flame resistant fabrics
CN110117862A (en) * 2019-05-16 2019-08-13 浏阳心之夏文化创意有限公司 A kind of imitative thatched roof grass cloth and preparation method thereof for decorative object
CN114616268A (en) 2019-07-10 2022-06-10 波士顿材料公司 Systems and methods for forming short fiber films, composites containing thermoset materials, and other composites
US11638452B2 (en) 2021-02-26 2023-05-02 Shanghai Uniwise International Co Limited Composite items of footwear and handwear
WO2023285881A1 (en) 2021-07-15 2023-01-19 Radicalarmour S.L Method for manufacturing an anti-cutting and anti-puncture fabric and fabric obtained
AU2022326461A1 (en) 2021-08-10 2024-02-29 Southern Mills, Inc. Flame resistant fabrics

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1964419A (en) * 1930-10-28 1934-06-26 Eduard V Asten Porous textile fabric
US2893442A (en) * 1953-03-30 1959-07-07 Genin Paul Reinforcing woven materials for making laminated articles
US4183993A (en) * 1978-01-30 1980-01-15 Gulf States Paper Corporation Reinforced fabric and laminate made therewith
US5006390A (en) * 1989-06-19 1991-04-09 Allied-Signal Rigid polyethylene reinforced composites having improved short beam shear strength
US5160776A (en) * 1987-07-13 1992-11-03 Allied-Signal Inc. Ballistic-resistant composite article
US5958804A (en) * 1996-03-15 1999-09-28 Hexcel Cs Corporation Fabrics having improved ballistic performance and processes for making the same
WO2000061435A1 (en) * 1999-03-20 2000-10-19 Survival, Incorporated Ballistic resistant panel and method of making
WO2000065297A2 (en) * 1999-04-16 2000-11-02 Millennium Body Armour, Inc. Multi-layered impact resistant ply and composite
WO2002014408A2 (en) * 2000-08-16 2002-02-21 Honeywell International Inc. Impact resistant rigid composite and method of manufacture
WO2002090866A1 (en) * 2001-05-03 2002-11-14 Barrday, Inc. Quasi-unidirectional fabric for ballistic applications

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671542A (en) 1966-06-13 1972-06-20 Du Pont Optically anisotropic aromatic polyamide dopes
NL7605370A (en) 1976-05-20 1977-11-22 Stamicarbon PROCESS FOR THE CONTINUOUS MANUFACTURE OF FIBER POLYMER CRYSTALS.
FR2443397A1 (en) 1978-12-08 1980-07-04 Imi Kynoch Ltd Laminated container of epoxy! and polyamide bonded glass fibres - sandwiching elastomeric layers used for storing dangerous materials e.g. explosives
US4356138A (en) 1981-01-15 1982-10-26 Allied Corporation Production of high strength polyethylene filaments
US4413110A (en) 1981-04-30 1983-11-01 Allied Corporation High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore
US4457985A (en) 1982-03-19 1984-07-03 Allied Corporation Ballistic-resistant article
US4501856A (en) 1982-03-19 1985-02-26 Allied Corporation Composite containing polyolefin fiber and polyolefin polymer matrix
US4543286A (en) 1982-03-19 1985-09-24 Allied Corporation Composite containing coated extended chain polyolefin fibers
US4563392A (en) 1982-03-19 1986-01-07 Allied Corporation Coated extended chain polyolefin fiber
US4403012A (en) 1982-03-19 1983-09-06 Allied Corporation Ballistic-resistant article
US4584347A (en) 1982-09-30 1986-04-22 Allied Corporation Modified polyolefin fiber
US4748064A (en) 1985-01-14 1988-05-31 Allied Corporation Ballistic-resistant composite article
US4623574A (en) 1985-01-14 1986-11-18 Allied Corporation Ballistic-resistant composite article
US4650710A (en) 1985-02-25 1987-03-17 Allied Corporation Ballistic-resistant fabric article
US4613535A (en) 1985-02-28 1986-09-23 Allied Corporation Complex composite article having improved impact resistance
US4737402A (en) 1985-02-28 1988-04-12 Allied Corporation Complex composite article having improved impact resistance
US4737401A (en) 1985-03-11 1988-04-12 Allied Corporation Ballistic-resistant fine weave fabric article
FR2588073B1 (en) 1985-09-27 1989-08-04 Hutchinson FLEXIBLE AND MODULAR SHIELDING DEVICE
US4681792A (en) 1985-12-09 1987-07-21 Allied Corporation Multi-layered flexible fiber-containing articles
US4916000A (en) * 1987-07-13 1990-04-10 Allied-Signal Inc. Ballistic-resistant composite article
US4820568A (en) 1987-08-03 1989-04-11 Allied-Signal Inc. Composite and article using short length fibers
US5112667A (en) 1987-08-03 1992-05-12 Allied-Signal Inc. Impact resistant helmet
EP0380523A1 (en) 1987-08-03 1990-08-08 AlliedSignal Inc. Impact resistant helmet
US4883700A (en) 1987-08-03 1989-11-28 Allied-Signal Inc. Composite and article using short length fibers at oblique angles
US5175040A (en) 1987-08-03 1992-12-29 Allied-Signal Inc. Flexible multi-layered armor
JPH01150532A (en) * 1987-12-08 1989-06-13 Kenji Tsunoda Workpiece with multiaxially reinforced reinforcing interliner
US5061545A (en) 1988-11-28 1991-10-29 Allied-Signal Inc. Fiber/polymer composite with nonuniformly distributed polymer matrix
US5190802A (en) 1989-01-06 1993-03-02 Pilato Louis A Ballistic resistant laminate
US5330820A (en) 1989-07-13 1994-07-19 Alliedsignal Inc. Ballistic resistant composition article having improved matrix system
US5165989A (en) 1989-12-04 1992-11-24 Allied-Signal Inc. Extended shelf life prepreg article and method
US5124195A (en) 1990-01-10 1992-06-23 Allied-Signal Inc. Flexible coated fibrous webs
NL9120011A (en) 1990-02-16 1992-12-01 Allied Signal Inc Ballistic-resistant thermosetting resin-impregnated fabric - wound into roll with interleaving separation film before curing resin
JPH04113718A (en) * 1990-09-04 1992-04-15 Fujitsu Ltd Hitless clock switching device
US5677029A (en) 1990-11-19 1997-10-14 Alliedsignal Inc. Ballistic resistant fabric articles
US5185195A (en) 1990-11-19 1993-02-09 Allied-Signal Inc. Constructions having improved penetration resistance
US5187023A (en) 1990-11-19 1993-02-16 Allied-Signal Inc. Ballistic resistant fabric articles
US5196252A (en) 1990-11-19 1993-03-23 Allied-Signal Ballistic resistant fabric articles
US5167876A (en) 1990-12-07 1992-12-01 Allied-Signal Inc. Flame resistant ballistic composite
US6248676B1 (en) 1991-10-21 2001-06-19 Milliken & Company Bullet resistant fabric and method of manufacture
US6268301B1 (en) 1992-03-25 2001-07-31 Toyobo Co., Ltd. Ballistic-resistant article and process for making the same
WO1994009336A1 (en) 1992-10-13 1994-04-28 Allied-Signal Inc. Entangled high strength yarn
US5471906A (en) 1993-10-15 1995-12-05 W. L. Gore & Associates, Inc. Body armor cover and method for making the same
US5465760A (en) 1993-10-25 1995-11-14 North Carolina State University Multi-layer three-dimensional fabric and method for producing
US5552208A (en) 1993-10-29 1996-09-03 Alliedsignal Inc. High strength composite
US5702657A (en) 1994-12-27 1997-12-30 Nippon Oil Co., Ltd. Method for the continuous production of a polyethylene material having high strength and high modulus of elasticity
US5789327A (en) 1995-08-28 1998-08-04 Rousseau; Wm. Richard Armor panel
US5960470A (en) 1996-08-02 1999-10-05 Second Chance Body Armor, Inc. Puncture resistant protective garment and method for making same
US5809805A (en) * 1996-09-03 1998-09-22 Mcdonnell Douglas Corporation Warp/knit reinforced structural fabric
US6103641A (en) 1998-04-09 2000-08-15 Gehring Textiles Inc Blunt trauma reduction fabric for body armor
US6129122A (en) 1999-06-16 2000-10-10 3Tex, Inc. Multiaxial three-dimensional (3-D) circular woven fabric
US20010053645A1 (en) 2000-01-18 2001-12-20 Henderson William J. Multi-layered ballistic resistant article
IT1317268B1 (en) * 2000-04-17 2003-05-27 Citterio Flli Spa REINFORCED MULTILAYER FABRIC AND PROCEDURE FOR ITS REALIZATION
WO2002018687A2 (en) * 2000-08-30 2002-03-07 Warwick Mills, Inc. Woven fabric constructions having high cover factors and fill yarns with a weight per unit length less than the weight per unit length of warp yarns of the fabric
US6841492B2 (en) * 2002-06-07 2005-01-11 Honeywell International Inc. Bi-directional and multi-axial fabrics and fabric composites

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1964419A (en) * 1930-10-28 1934-06-26 Eduard V Asten Porous textile fabric
US2893442A (en) * 1953-03-30 1959-07-07 Genin Paul Reinforcing woven materials for making laminated articles
US4183993A (en) * 1978-01-30 1980-01-15 Gulf States Paper Corporation Reinforced fabric and laminate made therewith
US5160776A (en) * 1987-07-13 1992-11-03 Allied-Signal Inc. Ballistic-resistant composite article
US5006390A (en) * 1989-06-19 1991-04-09 Allied-Signal Rigid polyethylene reinforced composites having improved short beam shear strength
US5958804A (en) * 1996-03-15 1999-09-28 Hexcel Cs Corporation Fabrics having improved ballistic performance and processes for making the same
WO2000061435A1 (en) * 1999-03-20 2000-10-19 Survival, Incorporated Ballistic resistant panel and method of making
WO2000065297A2 (en) * 1999-04-16 2000-11-02 Millennium Body Armour, Inc. Multi-layered impact resistant ply and composite
WO2002014408A2 (en) * 2000-08-16 2002-02-21 Honeywell International Inc. Impact resistant rigid composite and method of manufacture
WO2002090866A1 (en) * 2001-05-03 2002-11-14 Barrday, Inc. Quasi-unidirectional fabric for ballistic applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1585853A2 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008030980A1 (en) * 2006-09-06 2008-03-13 Dow Global Technologies Inc. Knit fabrics comprising olefin block interpolymers
US8372228B2 (en) 2009-06-08 2013-02-12 Societa' Per Azioni Fratelli Citterio Method and apparatus for continuous production of a textile structure resistant to perforation and penetration and textile structure thus obtained
EP2261406A1 (en) 2009-06-08 2010-12-15 F.LLI Citterio S.p.A. Method and apparatus for continuous production of a textile structure resistant to perforation and penetration and textile structure thus obtained
RU2555688C2 (en) * 2010-03-18 2015-07-10 Тохо Тенакс Ойропе Гмбх Stitched multiaxial multilayer nonwoven fabric
US8613257B2 (en) 2010-03-18 2013-12-24 Toho Tenax Europe Gmbh Stitched multiaxial non-crimp fabrics
AU2011229315B2 (en) * 2010-03-18 2014-09-11 Toho Tenax Europe Gmbh Stitched multiaxial scrims
AU2011229315C1 (en) * 2010-03-18 2015-01-22 Toho Tenax Europe Gmbh Stitched multiaxial scrims
WO2011113751A1 (en) 2010-03-18 2011-09-22 Toho Tenax Europe Gmbh Stitched multiaxial scrims
AU2014227431B2 (en) * 2010-03-18 2015-08-13 Toho Tenax Europe Gmbh Stitched multiaxial non-crimp fabrics
EP3103906A1 (en) 2010-03-18 2016-12-14 Toho Tenax Europe GmbH Sewed multiaxial fabric
WO2012038919A1 (en) 2010-09-23 2012-03-29 Societa' Per Azioni Fratelli Citterio Impact-resistant and penetration-resistant textile structure, method for producing such textile structure and apparatus thereof
EP2434250A1 (en) 2010-09-23 2012-03-28 Fratelli Citterio S.p.A. An impact-resistant and penetration-resistant textile structure, method for producing such textile structure and apparatus thereof
US10895437B2 (en) 2012-10-16 2021-01-19 Blucher Gmbh Ballistic underwear

Also Published As

Publication number Publication date
AR040161A1 (en) 2005-03-16
AU2003304363A1 (en) 2005-03-17
CA2500733C (en) 2011-05-10
JP4318691B2 (en) 2009-08-26
EP1585853A2 (en) 2005-10-19
JP2006515649A (en) 2006-06-01
EP1585853A3 (en) 2005-11-09
CA2500733A1 (en) 2005-03-31
MXPA04012304A (en) 2005-05-30
EP2267399A3 (en) 2014-06-25
KR20060025112A (en) 2006-03-20
US6841492B2 (en) 2005-01-11
WO2005028724A3 (en) 2005-09-22
MY139764A (en) 2009-10-30
EP1585853B1 (en) 2016-10-05
EP2267399A2 (en) 2010-12-29
US20030228815A1 (en) 2003-12-11
KR101036241B1 (en) 2011-05-20
US7073538B2 (en) 2006-07-11
ES2607808T3 (en) 2017-04-04
IL165600A0 (en) 2006-01-15
TW200401056A (en) 2004-01-16
US20050081571A1 (en) 2005-04-21
IL165600A (en) 2010-11-30

Similar Documents

Publication Publication Date Title
CA2500733C (en) Bi-directional and multi-axial fabrics and fabric composites
EP2121301B1 (en) Cross-plied composite ballistic articles
US7288307B2 (en) Hybrid laminated fiber sheets
US9562744B2 (en) Soft body armor having enhanced abrasion resistance
US7820565B2 (en) Densely woven quasi-unidirectional fabric for ballistic applications
RU2279033C2 (en) Piercing-resistant material containing cloth with a high ratio of linear densities for two sets of threads
US20030199215A1 (en) Ballistic fabric laminates
US10081159B2 (en) Materials gradient within armor for balancing the ballistic performance
EP1805473A2 (en) Lightweight armor against multiple high velocity bullets
CZ299419B6 (en) Penetration-resistant material
AU2003304363B2 (en) Bi-directional and multi-axial fabrics and fabric composites
ZA200500124B (en) Bi-directional and multi-axial fabrics and fabric compositions
MXPA01007259A (en) Penetration-resistant material comprising fabric with high linear density ratio of two sets of threads

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1-2004-502006

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2500733

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 165600

Country of ref document: IL

Ref document number: PA/a/2004/012304

Country of ref document: MX

Ref document number: 1020047019944

Country of ref document: KR

Ref document number: 2005508829

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2003817701

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003817701

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4112/DELNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003304363

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005/00124

Country of ref document: ZA

Ref document number: 200500124

Country of ref document: ZA

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NI NO NZ OM PH PL RO RU SC SD SE SG SK SL TJ TM TN TT TZ UA UG UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LU NL PT RO SE SI SK TR BF BJ CF CI CM GA GN GQ GW ML MR NE SN TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003817701

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047019944

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2003304363

Country of ref document: AU

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0311635

Country of ref document: BR

Free format text: PEDIDO RETIRADO FACE A IMPOSSIBILIDADE DE ACEITACAO DA ENTRADA NA FASE NACIONAL POR TER SIDO INTEMPESTIVA. O PRAZO PARA ENTRADA NA FASE NACIONAL EXPIRAVA EM 07.02.2004 ( 20 MESES - BR DESIGNADO APENAS), ELEICAO NAO COMPROVADA, E A PRETENSA ENTRADA NA FASE NACIONAL SO OCORREU EM 07.12.2004.